PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biophotonics for biofuel upgradation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Biofonika w podnoszeniu jakości biopaliw
Języki publikacji
EN
Abstrakty
EN
Experimental studies have been made to find out Cyanobacterias’ biophotonical response in gaseousfuelation and car-bon dioxide fixation during photo-anaerobic digestion. A new horizontal type photo-bioreactor has been designed by using environment hazard plastic bottles and it works ideally for anoxygenic cyanobacterial growth. Through ‘V3-metagenomics’ of 16S rRNA gene sequencing by paired-end Illumina MiSeq and downstream analysis by QIIME program, we have identified anaerobic cyanobacteria, represent the orders YS2 and Streptophyta. OTUs have been identified by aligning against Greengenes and Silva databases, separately. The flame temperature of the fuel gas is 860°C and the percentcontent of carbon dioxide (CO2) is 17.6%.
PL
Badania doświadczalne przeprowadzono w celu określenia biofotonicznej zdolnośći cyjanobakterii do przeprowadzania reakcji uwalniania gazów do paliw oraz wiązania dwutlenku węgla podczas fotofermentacji beztlenowej. Nowy bioreaktor typu horyzontalnego został zaprojektowany przy użyciu zagrażających środowisku plastikowych butelek i działa/nadaje się idealnie dla beztlenowego wzrostu cyjanobakterii. Poprzez metagenomikę regionu V3 genu kodującego 16 S rRNA sekwencjonowanego poprzez sparowanie odczyty przy użyciu Illumina MiSeq oraz analizy downstream za pomocą programu QIIME zidentyfikowaliśmy beztlenowe cyjanobakterie, reprezentowane przez YS2 i Streptophyta. OTU (ang. Operational Taxonomic Unit) zostały zidentyfikowane przez wyrównywanie względem baz danych Greengenes i Silva oddzielnie. Temperatura płomienia w paliwie wynosi 860°C, a procentowa zawartość dwutlenku węgla (CO2) wynosi 17,6%.
Wydawca
Rocznik
Tom
Strony
262--266
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Biochemist and R&D Associate Venkatesh Natural Extract Pvt. Ltd. Madhyapradesh, INDIA
autor
  • Bioconversion Laboratory, Department of Biotechnology, Vidyasagar University, West Bengal, INDIA
Bibliografia
  • [1] G. Rana, T. Mandal, N.K. Mandal and S. Mandal, “Hydrogen containing fuel gas generation from organic wastes using photon activated magnesium metal catalyst”, South African Journal of Chemical Engineering, vol. 23, pp. 124-131, 2017.
  • [2] J. Wang, “Decentralized biogas technology of anaerobic digestion and farm ecosystem: opportunities and challenges”, Frontiers in Energy Research, vol. 2, no. 10, pp. 1-12, 2014.
  • [3] T. Mandal, B.A. Kiran and N.K. Mandal, “Determination of the quality of biogas by flame temperature measurement”, Energy Conversion & Management, vol. 40, pp. 1225-1228, 1999.
  • [4] T. Stalin, B. Sathya Priya and K. Selvam, “Ecofriendly application of cellulase and xylanase producing marine Streptomyces clavuligerus as enhancer in biogas production from waste”, African Journal of Environmental Science and Technology, vol. 6, no. 6, pp. 258-262, 2012.
  • [5] F.W. Ntengwe, L. Njovu, G. Kasali and L.K. Witika, “Biogas production in cone-closed floatingdome batch digester under tropical conditions”, International Journal of ChemTech Research, vol. 2, pp. 483-492, 2010.
  • [6] T. Mandal, N.K. Mandal and V. Rao, “Comparative study of biogas production from different waste materials”, Energy Conversion & Management, vol. 38, pp. 679-683, 1997.
  • [7] A. Mudhoo, P.R. Moorateeah and R. Mohee, “Effects of Microwave Heating on Biogas Production, Chemical Oxygen Demand and Volatile Solids Solubilization of Food Residues”, World Academy of Science, Engineering and Technology, vol. 69, pp. 805-810, 2012.
  • [8] T. Mandal and N.K. Mandal, “Biomethanation of some waste materials with pure metallic magnesium catalyst: improved biogas yields”, Energy Conversion & Management, vol. 39, pp. 1177-1179, 1998.
  • [9] M.S. Miah, C. Tada, Y. Yang and S. Sawayama, “Aerobic thermophilic bacteria enhance biogas production”, Journal of Material Cycles and Waste Management, vol. 7, no. 1, pp. 48-54, 2005.
  • [10] M.A. Abdel-Hadi, “Determination of methane content by measurements of flame temperature and voltage from biogas burner”, Misr Journal of Agricultural Engineering, vol. 26, pp. 498-513, 2009.
  • [11] M. Kröbera, T. Bekel, N.N. Diazb, A. Goesmann, S. Jaenicke, L. Krause, D. Miller, K.J. Runte, P. Viehöver, A. Pühler and A. Schlüter, “Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing”, Journal of Biotechnology, vol. 142, pp. 38-40, 2009.
  • [12] N.N. Tuan, Y.C. Chang, C.P. Yu and S.L. Huang, “Multiple approaches to characterize the microbial community in a thermophilic anaerobic digester running on swine manure: A case study”, Microbiology Research, vol. 169, no. 9-10, pp. 717-724, 2014.
  • [13] M.L. Chong, N.A.A. Rahman, R.A. Rahim, S.A. Aziz, Y. Shirai and M.A. Hassan, “Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology”, International Journal of Hydrogen Energy, vol. 34, no. 17, pp. 7475-7482, 2009.
  • [14] N. Quintana, F. van der Kooy, M.D. Van de Rhee, G.P. Voshol and R. Verpoorte, “Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering”, Applied Microbiology Biotechnology, vol. 91, no. 3, pp. 471-490, 2011.
  • [15] L. You, L. He and Y.J. Tang, “Photoheterotrophic Fluxome in Synechocystis sp. Strain PCC 6803 and Its Implications for Cyanobacterial Bioenergetics”, Journal of Bacteriaology, vol. 197, no. 5, pp. 943-950, 2015.
  • [16] G. Rana, T. Mandal and N.K. Mandal, “Generation of high calorific fuel gas by photosynthetic bacteria isolated from cowdung”, International Journal of Research (IJR), vol. 1, no. 8, pp. 115-128, 2014.
  • [17] Y. Huang, L. Zhao, T. Dong and X. Tan, “Optimization of enzyme - producing conditions of Micrococcus sp. S -II for L-Cysteine production”, African Journal of Biotechnology, vol. 10, pp. 615-623, 2010.
  • [18] V.L. Webb and E.W. Maas, “Sequence analysis of 16S rRNA gene of cyanobacteria associated with the marine sponge Mycale (Carmia) hentscheli”, FEMS Microbiology Letters, vol. 207, no 1, pp. 43-47, 2002.
  • [19] J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Peña, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld and R. Knight, “QIIME allows analysis of high-throughput community sequencing data”, Nature Methods, vol. 7, pp. 335-336, 2010.
  • [20] M. Timmerman, E. Schuman, M. Van Eekert and J. van Riel, “Optimization the performance of a reactor by reducing the retention time and addition of glycerin for anaerobically digested manure”, Environmental Technology, vol. 36, no. 10, pp. 1223-1236, 2015.
  • [21] D. Dutta, D. De, S. Chaudhuri and S.K. Bhattacharya, “Hydrogen production by Cyanobacteria”, Microbial Cell Factories, vol. 4, no. 36, pp. 1-11, 2005.
  • [22] M. Rosenbaum, Z. He and L.T. Angenent, “Light energy to bioelectricity: photosynthetic microbial fuel cells”, Current Opinion in Biotechnology, vol. 21, no. 3, pp. 259-264, 2010.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2070f39-d652-4ac4-b2db-606ec945a0cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.