Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper aimed to investigate the selected physicochemical and biological properties of titanium dioxide thin films deposited by atomic layer deposition on 316LVM stainless steel dedicated for cardiovascular implants. The main challenge in surface modification of these implants is the complexity of the processes taking place in the circulatory system. The atomic layer deposition was carried out for a number of cycles 500 and temperature 200 °C for 316LVM stainless steel substrate. The surface topography and surface microstructure were examined. Mouse fibroblasts L929 and Human Dermal Fibroblasts (NHDF-Ad) were used for cytotoxicity assays. The following biocompatibility aspects were investigated in vitro: direct cytotoxicity, hemolysis, platelet activation and aggregation, and pro-inflammatory cytokine levels. The titanium dioxide thin films inherited the substrate topography. The surface microstructure was amorphous with the typical layer by layer growth. The film improved the in vitro cell response in terms of cell viability. The cells were also able to proliferate and adhere; however, differences in the cell morphology and the distribution of cell nuclei were observed. The host cell damage was not noted in terms of lactate dehydrogenase levels. The proposed surface modification reduced the hemolysis index and did not significantly affect platelet activation and aggregation. Acute cytotoxicity of the thin films is not predicted basing on the in vitro pro-inflammatory cytokine assay. The results of the biological tests may be basis for further biological assessment proving the full biocompatibility of the proposed surface modification dedicated for specific cardiovascular implants.
Czasopismo
Rocznik
Tom
Strony
art. e237, s. 1--14
Opis fizyczny
Bibliogr. 25 poz., il., tab., wykr.
Twórcy
autor
- Manufacturer of Medical Instruments CHIRMED Marcin Dyner, Rudniki, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Kraków, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Kraków, Poland
autor
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor
- Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
autor
- Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
autor
- Institute of Physics-CSE, Silesian University of Technology, Gliwice, Poland
autor
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
Bibliografia
- 1. Polish Normalistic Committee. PN-EN ISO 10993-4:2018-02 Biological evaluation of medical devices Part 4: selection of tests for interactions with blood. Warsaw; 2018.
- 2. Hu L, Qi W, Li Y. Coating strategies for atomic layer deposition. Nanotechnol Rev. 2017;6:527–47.
- 3. Matero R. Atomic layer deposition of oxide films-growth, characterisation and reaction mechanism studies. Helsinki: University of Helsinki-Finland; 2004.
- 4. Marin E, Lanzutti A, Guzman L, Fedrizzi L. Corrosion protection of AISI 316 stainless steel by ALD alumina/titania nanometric coatings. J Coat Technol Res. 2011;8:655.
- 5. Szewczenko J, Jaglarz J, Basiaga M, Kurzyk J, Paszenda Z. Optical methods applied in thickness and topography testing of passive layers on implantable titanium alloys. Opt Appl. 2013;43(1):173-80.
- 6. Walke W, Paszenda Z, Pustelny T, Opilski Z, Drewniak S, Kos̈cielniak-Ziemniak M. Evaluation of physicochemical properties of SiO2-coated stainless steel after sterilization. Mater Sci Eng. 2016;63:155-63.
- 7. Szewczenk J, Jaglarz J, Basiaga M, Kurzyk J, Skoczek E. Paszenda Z Topography and thickness of passive layers on anodi cally oxidized Ti6Al4V alloys. Przegląd Elektrotechniczny. 2012;88:228-31.
- 8. Dobrzański L, Dobrzańska-Danikiewicz A, Szindler M, Achtelik-Franczak A. Atomic layer deposition of TiO2 onto porous biomaterials. Arch Mater Sci Eng. 2015;75(1):5-11.
- 9. Liu L, Bhatia R. Webster T, „Atomic layer deposition of nano-TiO2 thin films with enhanced biocompatibility”. Int J Nanomed. 2017;12:234-9.
- 10. Chung H, Sung O, Yongjoo P, Jin-Sang K, Tae Joo P, Seong K. Atomic-layer deposition of TiO2 thin films with a thermally stable (CpMe5)Ti(OMe)3 precursor. Appl Surf Sci. 2021;550:149381.
- 11. Szindler M, Szindler M, Boryło P, Jung T. Structure and optical properties of TiO2 thin films deposited by ALD method. Open Phys. 2017;15:1067-71.
- 12. Huang JJ, Lee YT. Self-cleaning and antireflection properties of titanium oxide film by liquid phase deposition. Surf Coat Tech. 2013;231:257-60.
- 13. Donnell S, Jose F, Shiel K, Snelgrove M, McFeely C, McGill E, O’Connor R. Thermal and plasma enhanced atomic layer deposition of ultrathin TiO2 on silicon from amide and alkoxide precursors: growth chemistry and photo-electrochemical performance. J Phys D Appl Phys. 2022;55:085105.
- 14. Zhuiykov S, Akbari MK, Hai Z, Xue C, Xu H, Hyde L. Wafer-scale fabrication of conformal atomic-layered TiO2 by atomic layer deposition using tetrakis (dimethylamino) titanium and H2O precursors. Mater Des. 2017;120:99-108.
- 15. Śmieszek A, Seweryn A, Marcinkowska K, Sikora M, Lawniczak-Jablonska K, Witkowski BS, Kuzmiuk P, Godlewski M, Marycz K. Titanium dioxide thin films obtained by atomic layer deposition promotes osteoblasts’ viability and differentiation potential while inhibiting osteoclast activity-potential application for osteoporotic bone regeneration. Materials. 2020;13:1-2.
- 16. Yang F, Chang R, Webster T. Atomic layer deposition coating of TiO2 nano-thin films on magnesium-zinc alloys to enhance cyto-compatibility for bioresorbable vascular stents. Int J Nanomed. 2019;14:9955-70.
- 17. Jugessur AS, Textor A, Grierson C. Nanometer scale coating using atomic layer deposition technique to enhance performance of bio-medical devices. In: Proceedings of the 12th IEEE International Conference on Nano/Molecular Medicine and Engineering; 2018.
- 18. Weng Y, Song Q, Zhou Y. Immobilization of selenocystamine on TiO2 surfaces for in situ catalytic generation of nitric oxide and potential application in intravascular stents. Bionaterials. 2011;32(5):1253-3.
- 19. Polish Committee for Standardization, Health, Environment and Medicine Sector, PN-EN ISO 10993-5:2009 Biological evaluation of medical devices-part 5: In vitro cytotoxicity testing, Warsaw, 2009.
- 20. Astaneh S, Faverani L, Sukotjo C, Takoudis C. Atomic layer deposition on dental materials: processing conditions and surface functionalization to improve physical, chemical, and clinical properties-a review. Acta Biomater. 2021;121:103-11.
- 21. ASTM International. Standard practice for assessment of hemolytic properties of materials. West Conshohocken: ASTM International; 2010.
- 22. Sanak M, Jakieła B, Węgrzyn W. Assessment of hemocompatibility of materials. Bull Pol Acad Sci Tech Sci. 2010;58:2.
- 23. Aarik J, Aidla A, Uustare T, Sammelselg V. Morphology and structure of TiO2 thin films grown by atomic layer deposition. J Cryst Growth. 1995;148(3):268-75.
- 24. Cheng H, Hsu C, Chen Y. Substrate materials and deposition temperature dependent growth characteristics and photocatalytic properties of ALD TiO2 films. J Electrochem Soc. 2009;156:8.
- 25. Jõgi I, Pärs M, Martti J, Aidla J. Conformity and structure of titanium oxide films grown by atomic layer deposition on silicon substrates. Thin Solid Films. 2008;516(15):4855-62.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2060335-2e09-4922-a869-2b6347440ab0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.