PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dependence of acoustic noise emission on the dissipated energy of plunging waves

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of experiments performed in a wave flume designed to explore associations between the dissipation of surface wave energy during breaking and acoustic noise emission are presented. The experiments were carried out using tap water in the wave laboratory of the Institute of Hydro-Engineering of the Polish Academy of Sciences, Gdańsk, Poland. In particular, being shown are the parameters of empirical dependency between the dissipated wave energy during plunging and the energy of pre-breaking wave trains. Relationships between wave energy losses in the case of breakers with an amplitude of about 10 cm and the noise acoustic energy in the frequency band from 80 to 12,500 Hz were estimated. Taking into consideration the phenomena of reverberations and propagation in an acoustical waveguide, a numerical model was used for the correction of the observed noise's acoustic spectra. A detailed analysis of the factors affecting the noise level in the semi-enclosed volume allowed us to specify the rate of conversion of the wave energy dissipated during breaking into acoustic energy, which was found to be in the order of 10−8.
Czasopismo
Rocznik
Strony
70--82
Opis fizyczny
Bibliogr. 43 poz., rys., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
Bibliografia
  • [1] Allen, J. B., Berkley, D. A., 1979. Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65 (4), 943-950, http://dx.doi.org/10.1121/1.382599.
  • [2] Anguelova, M. D., Huq, P., 2018. Effects of salinity on bubble cloud characteristics. J. Mar. Sci. Eng. 6 (1), art. no. 1, http://dx.doi.org/10.3390/jmse6010001.
  • [3] Bass, S. J., Hay, A. E., 1997. Ambient noise in the natural surf zone: wave breaking frequencies. In: IEEE OCEANS'98 Conference Proceedings. 1373-1377, http://dx.doi.org/10.1109/OCEANS.1998.726293.
  • [4] Blenkinsopp, C. E., Chaplin, J. R., 2007. Void fraction measurements in breaking waves. Proc. Roy. Soc. A 463, 3151-3170, http://dx.doi.org/10.1098/rspa.2007.1901.
  • [5] Blenkinsopp, C. E., Chaplin, J. R., 2011. Void fraction measurements and scale effects in breaking waves in freshwater and seawater. Coast. Eng. 58, 417-428, http://dx.doi.org/10.1016/j.coastaleng.2010.12.006.
  • [6] Brekhovskikh, L. M., Godin, O. A., 1990. Acoustic of Layered Media, Part I. Springer-Verlag, 240 pp.
  • [7] Carey,W. M., Browning, D., 1988. Low-frequency ocean ambient noise: measurements and theory. In: Kerman, B. R. (Ed.), Natural Mechanisms of Surface-Generated Noise in the Ocean. Reidel, Dordrecht, 361-376, http://dx.doi.org/10.1007/978-94-009-3017-9_26.
  • [8] Carey, W. M., Fitzgerald, J. W., 1993. Low frequency noise from breaking waves. In: Kerman, B. R. (Ed.), Natural Physical Sources of Underwater Sound. Springer, Dordrecht, 277-304, http://dx.doi.org/10.1007/978-94-011-1626-822.
  • [9] Carey, W. M., Fitzgerald, J. M., Monahan, E. C., Wang, Q., 1993. Measurement of the sound produced by a tipping through with fresh and salt water. J. Acoust. Soc. Am. 93, 3178-3192, http://dx.doi.org/10.1121/1.405702.
  • [10] Cartmill, J. W., Su, M. Y., 1993. Bubble size distribution under saltwater and freshwater breaking waves. Dynam. Atmos. Oceans 20, 25-31, http://dx.doi.org/10.1016/0377-0265(93)90046-A.
  • [11] Chanson, H., Aoki, S., Hoque, A., 2006. Bubble entrainment and dispersion in plunging jet flows: freshwater versus seawater. J. Coastal Res. 22 (3), 664-677, http://dx.doi.org/10.2112/03-0112.1.
  • [12] Dean, R. G., Dalrymple, R. A., 1984. Water Wave Mechanics for Engineers and Scientists. World Scientific, Singapore, 353 pp.
  • [13] Deane, G. B., 1999. Acoustic hot-spots and breaking wave noise in the surf zone. J. Acoust. Soc. Am. 105 (6), 3151-3167, http://dx.doi.org/10.1121/1.424646.
  • [14] Deane, G. B., Stokes, M. D., 2010. Model calculations of the underwater noise of breaking waves and comparison with experiment. J. Acoust. Soc. Am. 127 (6), 3394-3410, http://dx.doi.org/10.1121/1.3419774.
  • [15] Gibbs, B. M., Jones, K., 1972. A simple image method for calculating the distribution of sound pressure levels within an enclosure. Acta Acust. United Ac. 26, 24-32.
  • [16] Goda, Y., 2000. Random Seas and Design of Maritime Structures. World Scientific, Singapore, http://dx.doi.org/10.1142/3587.
  • [17] Haines, M. A., Johnson, B. D., 1995. Injected bubble populations in seawater and fresh water measured by a photographic method. J. Geophys. Res. 100, 7057-7068, http://dx.doi.org/10.1029/94JC03226.
  • [18] Hollett, R. D., 1994. Observations of underwater sound at frequencies below 1500 Hz from breaking waves at sea. J. Acoust. Soc. Am. 95, 165-170, http://dx.doi.org/10.1121/1.408374.
  • [19] Ingard, U., 1951. On the reflection of a spherical sound wave from an infinite plane. J. Acoust. Soc. Am. 23, 329-335, http://dx.doi.org/10.1121/1.1906767.
  • [20] Kennedy, R. M., 1992. Sea surface sound dipole source dependence on wave-breaking variables. J. Acoust. Soc. Am. 91 (4), 1974-1982, http://dx.doi.org/10.1121/1.403681.
  • [21] Kennedy, R. M., 1993. Acoustic radiation due to surface wave breaking. J. Acoust. Soc. Am. 94 (4), 2443-2445, http://dx.doi.org/10.1121/1.407466.
  • [22] Kerman, B. R., 1984. Underwater sound generation by breaking wind waves. J. Acoust. Soc. Am. 75 (1), 149-165, http://dx.doi.org/10.1121/1.390409.
  • [23] Klusek, Z., Lisimenka, A., 2007. Ambient sea noise in the Baltic Sea. In: Proceed. of the 2nd Intern. Conf. & Exhibition on Underwater Acoustic Measurements: Technologies & Results, Heraklion, Crete, 625-634.
  • [24] Klusek, Z., Lisimenka, A., 2013. Acoustic noise generation under plunging breaking waves. Oceanologia 55 (4), 809-836, http://dx.doi.org/10.5697/oc.55-4.809.
  • [25] Kolaini, A. R., 1998. Sound radiation by various types of laboratory breaking waves in fresh and salt water. J. Acoust. Soc. Am. 103 (1), 300-308, http://dx.doi.org/10.1121/1.421115.
  • [26] Kolaini, A. R., Crum, L. A., 1994. Observations of underwater sound from laboratory breaking waves and the implications concerning ambient noise in the ocean. J. Acoust. Soc. Am. 96 (3), 1755-1765, http://dx.doi.org/10.1121/1.410254.
  • [27] Kolaini, A. R., Roy, A., Gardner, D. L., 1994. Low-frequency acoustic emissions in fresh and salt water. J. Acoust. Soc. Am. 96 (3), 1766-1772, http://dx.doi.org/10.1121/1.411323.
  • [28] Lamarre, E., Melville, W. K., 1991. Air entrainment and dissipation in breaking waves. Nature 351, 469-472, http://dx.doi.org/10.1038/351469a0.
  • [29] Li, D., Farmer, D., 1993. Passive acoustical measurements of scale, probability, and intensity of wave breaking. In: IEEE Proceedings of OCEANS'93 Engineering in Harmony with Ocean, vol. 2, 193-197, http://dxdoi.org/10.1109/OCEANS.1993.326090.
  • [30] Li, D., Farmer, D., 1994. Observations of breaking surface wave statistics. J. Phys. Oceanogr. 24, 1368-1387, http://dx.doi.org/10.1175/1520-0485(1994)024<1368:OOBSWS>2.0.CO;2.
  • [31] Loewen, M. R., Melville,W. K., 1994. An experimental investigation of the collective oscillations of bubble plumes entrained by breaking waves. J. Acoust. Soc. Am. 95 (3), 1329-1343, http://dx.doi.org/10.1121/1.408573.
  • [32] Means, S. L., Heitmeyer, R. M., 2001. Low-frequency sound generation by an individual open-ocean breaking wave. J. Acoust. Soc. Am. 110, 761-767, http://dx.doi.org/10.1121/1.1379729.
  • [33] Means, S. L., Heitmeyer, R. M., 2002. Surf-generated noise signatures: a comparison of plunging and spilling breakers. J. Acoust. Soc. Am. 112 (2), 481-489, http://dx.doi.org/10.1121/1.1491256.
  • [34] Medwin, H., Daniel, A. C., 1990. Acoustical measurements of buble production by spilling breakers. J. Acoust. Soc. Am. 88 (1), 408-412, http://dx.doi.org/10.1121/1.399917.
  • [35] Melville, W. K., Loewen, M., Felizardo, F., Jessup, A., Buckingham, M., 1988. Acoustic and microwave signatures of breaking waves. Nature 336, 53-56.
  • [36] Melville, W. K., Loewen, M. R., Lamarre, E., 1993. Bubbles, noise and breaking waves: a review of laboratory experiments. In: Kerman, B. R. (Ed.), Natural Physical Sources of Underwater Sound. Kluwer Acad. Publ., 483-501, http://dx.doi.org/10.1007/978-94-011-1626-8_36.
  • [37] Orris, G. J., Nicholas, M., 2000. Collective oscillations of fresh and salt water bubble plumes. J. Acoust. Soc. Am. 107 (2), 771-787, http://dx.doi.org/10.1121/1.428253.
  • [38] Paprota, M., 2017. Experimental study on wave-current structure around a pneumatic breakwater. J. Hydro-Environ. Res. 17, 8-17, http://dx.doi.org/10.1016/j.jher.2017.09.002.
  • [39] Prosperetti, A., 1988. Bubble-related ambient noise in the ocean. J. Acoust. Soc. Am. 84 (3), 1042-1054, http://dx.doi.org/10.1121/1.396740.
  • [40] Slauenwhite, D. E., Johnson, B. D., 1999. Bubble shattering: differences in bubble formation in fresh water and seawater. J. Geophys. Res. 104 (C2), 3265-3275, http://dx.doi.org/10.1029/1998JC900064.
  • [41] Szuszkiewicz, J., Klusek, Z., 2018. Underwater noise emitted during small-scale air entrainment events. Oceanol. Hydrobiol. Stud. 47 (1), 87-97, http://dx.doi.org/10.1515/ohs-2018-0010.
  • [42] Tęgowski, J., 2004. A laboratory study of breaking waves. Oceanologia 46 (3), 365-382.
  • [43] Wu, J., 2000. Bubbles produced by breaking waves in fresh and salt waters. J. Phys. Oceanogr. 30 (7), 1809-1813, https://doi.org/10.1175/1520-0485(2000)030<1809:BPBBWI>2.0.CO;2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d202fbcb-f8f0-45b2-a268-4b2977c12723
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.