PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Warm stretch-formability of 0.2%C-1.5%Si-(1.5-5.0)%Mn TRIP-aided steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Warm stretch-formability of 0.2%C-1.5%Si-(1.5-5.0)%Mn transformation-induced plasticity (TRIP)-aided sheet steels with annealed martensite matrix was investigated for automotive applications. Additionally, the warm stretch-formability was related with the retained austenite characteristics. Design/methodology/approach: This study was aimed to enhance the stretchformability by warm forming which stabilizes mechanically a large amount of metastable retained austenite in the steels. Findings: The warm stretch-formability increased with an increase in Mn content. The stretch-formability of 5% Mn steel was improved by warm forming at peak temperatures of 150-300°C, which was the same level as that of 0.2%C-1.5%Si-1.5%Mn0.05%Nb TRIP-aided martensitic steel. The superior warm stretch-formability was caused by a large amount of mechanically stabilized retained austenite which suppresses considerably void initiation and growth at interface between matrix and transformed martensite. Higher peak temperatures for the stretch-formability than that for the total elongation was associated with high mean normal stress on stretch-forming. Research limitations/implications: The effect of warm forming on the stretchformability is smaller than that on the ductility. Practical implications: Investigation results can be easily applied to industrial technology. Originality/value: This paper presents an important result which the stretch-formability of 5% Mn TRIP-aided steel is mainly improved by stabilizing of retained austenite with low stacking fault energy. On the forming, only strain-induced α’-martensite transformation takes place and suppresses the void growth. The strain-induced bainite transformation never occurs during forming in 5% Mn steel, differing from conventional 1.5% Mn TRIP-aided steel.
Rocznik
Strony
5--15
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • Graduate School of Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
autor
  • Graduate School of Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
autor
  • Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Japan
Bibliografia
  • [1] V.F. Zackay, E.R. Parker, D. Fahr, R. Bush, The enhancement of ductility in high-strength steels, Transactions of American Society for Metals 60 (1967) 252-259.
  • [2] O. Matsumura, Y. Sakuma, Y. Ishii, J. Zhao, Effect of retained austenite of formability of high strength steel sheet, The Iron and Steel Institute of Japan International 32 (1992) 1110-1116.
  • [3] S. Hiwatashi, M. Takahashi. T. Katayama, M. Usuda, Effect of deformation-induced transformation on deep drawability: forming mechanism of TRIP type high-strength steel sheet, Journal of The Japan Society for Technology and Plasticity 35 (1994) 1109-1114.
  • [4] K. Sugimoto, M. Kobayashi, A. Nagasaka, S. Hashimoto, Warm stretch-formability of TRIP-aided dual-phase sheet steels, ISIJ International 35 (1995) 1407-1414.
  • [5] A. Nagasaka, K. Sugimoto, M. Kobayashi, S. Hashimoto, Effect of warm forming on stretch-flangeability of a TRIP-aided dual-phase steel, Tetsuto-Hagane 83 (1997) 335-340 (in Japanese).
  • [6] A. Nagasaka, K. Sugimoto, M. Kobayashi, H. Shirasawa, Effects of second phase morphology on warm stretch-flangeability of TRIP-aided dual-phase sheet steels, Tetsu-to-Hagane 84 (1998) 218-223(in Japanese).
  • [7] K. Sugimoto, A. Nagasaka, M. Kobayashi, S. Hashimoto, Effects of retained austenite on warm stretch-flangeability of TRIP-aided dual-phase sheet steels, The Iron and Steel Institute of Japan International 39 (1999) 56-63.
  • [8] L. Wang, J.G. Speer, Quenching and partitioning steel heat treatment, Metallography, Microstructure, and Analysis 2 (2013) 268-281.
  • [9] K. Sugimoto, J. Sakaguchi, T. Iida, T. Kashima, Stretch-flangeability of TRIP type bainitic sheet steels, The Iron and Steel Institute of Japan International 40 (2000) 920-926.
  • [10] K. Sugimoto, R. Kikuchi, S. Hashimoto, Development of formable high strength low alloy TRIP steels with annealed martensite matrix, Steel Research 73 (2002) 253-258.
  • [11] K. Sugimoto, M. Tsunezawa, T. Hojo, S. Ikeda, Ductility of 0.1-0.6C-1.5Si-1.5Mn ultra high-strength low-alloy TRIP-aided sheet steels with bainitic ferrite matrix, The Iron and Steel Institute of Japan International 44 (2004) 1608-1614.
  • [12] K. Sugimoto, M. Murata, T. Muramatsu, Y. Mukai, Formability of C-Si-Mn-Al-Nb-Mo ultra high-strength TRIP-aided steels, The Iron and Steel Institute of Japan International 47 (2007) 1357-1362.
  • [13] A. Grajcar, Determination of the stability of retained austenite in TRIP-aided bainitic steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 111-114.
  • [14] J. Kobayashi, D.V. Pham, K. Sugimoto, Stretchflangeability of 1.5GPa grade TRIP-aided martensitic cold rolled sheet steels, Steel Research International (Special ed. for ICTP 2011) (2011) 598-603.
  • [15] J. Kobayashi, S. Song, K. Sugimoto, Ultra highstrength TRIP-aided martensitic steels, The Iron and Steel Institute of Japan International 52 (2012) 1124- 1129.
  • [16] J. Kobayashi, D.V. Pham, K. Sugimoto, Stretchflangeability and bendability of a 0.2C-1.5Si-1.5Mn- 0.05Nb ultra high-strength TRIP-aided martensitic sheet steel, Steel Research International (Special ed. for Metal Forming 2012) (2012) 883-886.
  • [17] D.V. Pham, J. Kobayashi, K. Sugimoto, Effects of microalloying on stretch-flangeability of ultrahighstrength TRIP-aided martensitic steel sheets, The Iron and Steel Institute of Japan International 54 (2014) 1943-1951.
  • [18] K. Sugimoto, A.K. Srivastava, Microstructure and mechanical properties of a TRIP-aided martensitic steel, Metallography, Microstructure & Analysis 4 (2015) 344-354.
  • [19] J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Partitioning of carbon from supersaturated plates of ferrite with application to steel processing and fundamentals of the bainite transformation, Current Opinion in Solid State & Materials Science 8 (2004) 219-237.
  • [20] D. Fan, N. Fonstein, H. Jun, Effect of microstructure on tensile properties and cut-edge formability of DP, TRIP, Q&T and Q&P steels, Iron & Steel Technology Transactions 13 (2016) 180-185.
  • [21] R.L. Miller, Ultrafine-grained microstructures and mechani-cal properties of alloy steels, Metallurgical Transactions 3 (1972) 905-912.
  • [22] T. Furukawa, Dependence of strength-ductility characteristics on thermal histry in low carbon, 5 wt- %Mn steels, Materials Science and Technology 5 (1989) 465-470.
  • [23] T. Furukawa, H. Huang, O. Matsumura, Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity, Materials Science and Technology 10 (1994) 964-970.
  • [24] H. Haung, O. Matsumura, T. Furukawa, Retained austenite in low carbon, manganese steel after intercritical heat treatment, Materials Science and Technology 10 (1994) 621-626.
  • [25] H. Aydin, E. Essadiqi, I. Jung, S. Yue, Development of 3rd generation AHSS with medium Mn content alloying compositions, Materials Science and Engineering A 564 (2013) 501-508.
  • [26] W. Bleck, D. Raabe eds., Proceedings of 2nd International Conference on High Managanese Steel (HMnS 2014), Aachen, Geramany, 2014.
  • [27] S. Lee, B.C. De Cooman, On the selection of the optimal intercritical annealing temperature for medium Mn TRIP steel, Metallurgical and Materials Transactions A 44 (2013) 5018-5024.
  • [28] S. Chen, J. Hu, X. Zhang, H. Dong, W. Cao, High ductility and toughness of a micro-duplex medium-Mn steel in a large temperature range from -196°C to 200°C, Journal of Iron and Steel Research, International 22 (2015) 1126-1130.
  • [29] R. Rana, P.J. Gibbs, E. De Moor, J. G. Speer, D.K. Matlock, A composite modeling analysis of the deformation behavior of medium manganese steels, Steel Research International 86 (2015) 1139-1150.
  • [30] S. Kang, J.G. Speer, D. Krizan, D.K. Matlock, E. De Moor, Prediction of tensile properties of intercritically annealed Al-containing 0.19C-4.5Mn (wt%) TRIP steels, Materials and Design 97 (2016) 138-146.
  • [31] K. Sugimoto, K. Koyama, H. Tanino, Formability of 0.2%C-1.5%Si-(1.5-5)%Mn TRIP-aided annealed martensitic steels, Proceedings of Materials Science and Technology 2015 (MS&T 2015), AIST, Warrendale, PA, USA, 2015, 859-868.
  • [32] T. Hanamura, S. Torizuka, A. Sunahara, M. Imagunbai, H. Takechi, Excellent total mechanicalproperties - balance of 5% Mn, 30000 MPa% steel, The Iron and Steel Institute of Japan International 51 (2011) 685-687.
  • [33] H. Tanino, M. Horita, K. Sugimoto, Impact toughness of 0.2%C-1.5%Si-(1.5-5)%Mn transformation-induced plasticity-aided steels with an annealed martensite structure matrix, Metallurgical and Materials Transactions A 47 (2016) 2073-2079.
  • [34] K. Sugimoto, H. Tanino, J. Kobayashi, Impact toughness of 0.2%C-1.5%Si-(1.5-5.0)%Mn TRIP-aided martensitic sheet steels, Steel Research International 86 (2015) 1151-1160.
  • [35] O. Grassel G. Frommeyer, Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels, Materials Science and Technology 14 (1998) 1213-1217.
  • [36] K. Sugimoto, H. Tanino, J. Kobayashi, Warm ductility of 0.2%C-1.5%Si-5%Mn TRIP-aided steel, Materials Science and Engineering A to be submitted.
  • [37] I. Tsukatani, S. Hashimoto, T. Inoue, Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite, The Iron and Steel Institute of Japan International 31 (1991) 992-1000.
  • [38] K. Sugimoto, N. Usui, M. Kobayashi, S. Hashimoto, Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels, The Iron and Steel Institute of Japan International 32 (1992) 1311-1318.
  • [39] K. Sugimoto, M. Kobayashi, S. Hashimoto, Ductility and strain-induced transformation in a high strength TRIP-aided dual-phase steel, Metallurgical Transactions A 23 (1992) 3085-3091.
  • [40] D.J. Dyson, B. Holmes, Effect of alloying additions on the lattice parameter of austenite, Journal of the Iron and Steel Institute 208 (1970) 469-474.
  • [41] Y. Tomota, Phase Transformation, microstructure, and mechanical behavior in Fe-Mn alloys, Tetsu-to-Hagane 77 (1991) 315-325.
  • [42] O. Miyagawa, Iron and Steel Material, Asakura Publishing Co. Ltd., Tokyo, 1982, 119.
  • [43] J.B. Gilmour, G.R. Purdy, J.S. Kirkaldy, Thermodynamics controlling the proeutectoid ferrite transformations in Fe-C-Mn alloys, Metallurgical Transactions 3 (1972) 1455-1464.
  • [44] G.R. Speich, V.A. Demarest, R.L. Miller, Formation of austenite during intercritical annealing of dual-phase steels, Metallurgical Transactions A 12 (1981) 1419-1428.
  • [45] S.V. Radcliffe, M. Schatz, The effect of high pressure on the martensitic reaction in iron-carbon alloys, Acta Metallurgica 10 (1962) 201-207.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2016e01-bba9-43a6-bbeb-1dedc4cdd20d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.