PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects Of Process Parameters On Cu Powder Synthesis Yield And Particle Size In A Wet-Chemical Process

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ parametrów procesu na wydajność syntezy proszku Cu i wielkości cząstek w procesie mokrym chemicznym
Języki publikacji
EN
Abstrakty
EN
This study presents a simple wet-chemical process to prepare several micron-size Cu powders. Moreover, changes in powder synthesis yield and particle size are examined with different solvents, synthesis temperatures, and amounts of reducing agent during the synthesis. As a reducing agent and capping agent, L-ascorbic acid and polyvinyl pyrrolidone were used, respectively. The yields in distilled water or an ethylene glycol (EG)/distilled water mixture were higher than that in EG alone, and the yield increased with increasing temperature owing to a lower Δ Gred value. Increasing the L-ascorbic acid concentration also increased the yield. The Cu powder synthesized in 3 h at 90°C in distilled water with 272.8 mM of L-ascorbic acid showed the lowest average particle size of 2.52 μm, indicating mechanisms of short burst nucleation and reduced growth via the increased reduction rate of Cu ions. It is estimated that the nucleation step was nearly completed within 10 min in this system. The Cu powders synthesized in an ethylene glycol/distilled water mixture presented an average particle size of 3.76 μm and the highest yield of 87.9%.
Twórcy
autor
  • Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743, Korea
autor
  • Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743, Korea
Bibliografia
  • [1] S. Wu, Mater. Lett. 61, 1125 (2007).
  • [2] F. Fievet, F. Fievet-Vincent, J. P. Lagier, B. Dumont, M. Figlarz, J. Mater. Chem. 3, 627 (1993).
  • [3] A. Sinha, B.P. Sharma, Mater. Res. Bull. 37, 407 (2002).
  • [4] Y.-S. Lin, S.-S. Chiu, Polym. Eng. Sci. 44, 2019 (2004).
  • [5] D. S. Jung, H. M. Lee, Y. C. Kang, S. B. Park, J. Colloid Interface Sci. 364, 574 (2011).
  • [6] X. Xu, X. Luo, H. Zhuang, W. Li, B. Zhang, Mater. Lett. 57, 3987 (2003).
  • [7] J. Zhao, D. M. Zhang, J. Zhao, J. Solid State Chem. 184, 2339 (2011).
  • [8] S.-S. Chee, J.-H. Lee, J. Mater. Chem. C 2, 5372 (2014).
  • [9] N. Cabrera, N.F. Mott, Rep. Prog. Phys. 12, 164 (1949).
  • [10] A. Muzikansky, P. Nanikashvili, J. Grinblat, D. Zitoun, J. Phys. Chem. C, 117, 3093 (2013).
  • [11] M. Grouchko, A. Kamyshny, S. Magdassi, J. Mater. Chem. 117, 3057 (2009).
  • [12] P. Dixit, C. W. Tan, L. Xu, N. Lin, J. Miao, J. H. L. Pang, P. Backus, R. Preisser, J. Micromech. Microeng. 17, 1078 (2007).
  • [13] J.-N. Hwang, M.-J. Lee, H.-J. Kim, I.-H. Oh, K.-A. Lee, J. Kor. Powd. Met. Inst. 19, 348 (2012).
  • [14] D.-W. Park, H.-S. Kim, Y.-S. Kwon, K.-K. Cho, S.-G. Lim, I.-S. Ahn, J. Kor. Powd. Met. Inst. 19, 117 (2012).
  • [15] B.K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, J. Colloid Interface Sci. 311, 417 (2007).
  • [16] T. Ishizaki, R. Watanabe, J. Mater. Chem. 22, 25198 (2012).
  • [17] C. Wu, B. P. Mosher, T. Zeng, J. Nanoparticle Res. 8, 965 (2006).
  • [18] D. Larcher, R. Patrice, J. Solid State Chem. 154, 405 (2000).
  • [19] V. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc. 72, 4847 (1950).
  • [20] V. K. LaMer, Ind. Eng. Chem. 44, 1270 (1952).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d2003371-1939-4533-a20b-e86b29825d26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.