Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we describe the numerical model of a semiconductor disk laser, developed and implemented in the Photonics Group, Institute of Physics, Lodz University of Technology, Poland. It consists of four strongly interrelated components for: carrier transport, heat flow, material gain and optical phenomena calculations. Combination of these components gives the steady-state self-consistent model which enables a simulation of various aspects of a semiconductor disk laser operation. A numerical analysis of carrier and power losses within the active region of 1.3-μm GaInNAs/GaAs semiconductor disk laser has been carried out using this model.
Czasopismo
Rocznik
Tom
Strony
199--211
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
autor
- Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź, Poland
autor
- Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź, Poland
Bibliografia
- [1] KUZNETSOV M., Semiconductor Disk Lasers: Physics and Technology, [Ed.] Okhotnikov O.G., Wiley -VCH Verlag, 2010, pp. 1–71.
- [2] ZAKHARIAN A.R., HADER J., MOLONEY J.V., KOCH S.W., BRICK P., LUTGEN S., Experimental and theoretical analysis of optically pumped semiconductor disk lasers, Applied Physics Letters 83(7), 2003, pp. 1313–1315.
- [3] GESKE J., GAN K.-G., OKUNO Y.L., PIPREK J., BOWERS J.E., Vertical-cavity surface-emitting laser active regions for enhanced performance with optical pumping, IEEE Journal of Quantum Electronics 40(9), 2004, pp. 1155–1162.
- [4] MOROZOV Y.A., LEINONEN T., HARKONEN A., PESSA M., Simultaneous dual-wavelength emission from vertical external-cavity surface-emitting laser: a numerical modeling, IEEE Journal of Quantum Electronics 42(10), 2006, pp. 1055–1061.
- [5] KEMP A.J., HOPKINS J.-M., MACLEAN A.J., SCHULZ N., RATTUNDE M., WAGNER J., BURNS D., Thermal management in 2.3-μ m semiconductor disk lasers: a finite element analysis, IEEE Journal of Quantum Electronics 44(2), 2008, pp. 125–135.
- [6] SOKÓŁ A.K., SARZAŁA R.P., Influence of pumping beam width on VECSEL output power, International Journal of Electronics and Telecommunications 60(3), 2014, pp. 239–245.
- [7] SARZAŁA R.P., NAKWASKI W., Optimization of 1.3 μ m GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation, Journal of Physics: Condensed Matter 16(31), 2004, article S3121.
- [8] SOKÓŁ A.K., SARZAŁA R.P., Thermal management of GaInNAs/GaAs VECSELs, Opto-Electronics Review 21(2), 2013, pp. 191–198.
- [9] HODGSON N., HORST W., Laser Resonators and Beam Propagation. Fundamentals, Advanced Concepts, Applications, Springer, 2005.
- [10] HOPKINS J.-M., SMITH S.A., JEON C.W., SUN H.D., BURNS D., CALVEZ S., DAWSON M.D., JOUHTI T., PESSA M., 0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μ m, Electronics Letters 40(1), 2004, pp. 30–31.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1ff09e9-0e9a-41b9-81eb-57df37923d62