PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of content-based image analysis to environmental microorganism classification

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Environmental microorganisms (EMs) are single-celled or multi-cellular microscopic organ-isms living in the environments. They are crucial to nutrient recycling in ecosystems as they act as decomposers. Occurrence of certain EMs and their species are very informative indicators to evaluate environmental quality. However, the manual recognition of EMs in microbiological laboratories is very time-consuming and expensive. Therefore, in this article an automatic EM classification system based on content-based image analysis (CBIA) techniques is proposed. Our approach starts with image segmentation that determines the region of interest (EM shape). Then, the EM is described by four different shape descriptors, whereas the Internal Structure Histogram (ISH), a new and original shape feature extraction technique introduced in this paper, has turned out to possess the most discriminative properties in this application domain. Afterwards, for each descriptor a support vector machine (SVM) is constructed to distinguish different classes of EMs. At last, results of SVMs trained for all four feature spaces are fused in order to obtain the final classification result. Experimental results certify the effectiveness and practicability of our automatic EM classification system.
Twórcy
autor
  • Research Group for Pattern Recognition, Department ETI, University of Siegen, Hoelderlinstr. 3, D-57076 Siegen, Germany
autor
  • Research Group for Pattern Recognition, Department ETI, University of Siegen, Hoelderlinstr. 3, D-57076 Siegen, Germany
  • Research Group for Pattern Recognition, Department ETI, University of Siegen, Hoelderlinstr. 3, D-57076 Siegen, Germany
Bibliografia
  • [1] Fried J, Mayr G, Berger H, Traunspurger W, Psenner R, Lemmer H. Monitoring protozoa and metazoa biofilm communities for assessing wastewater quality impact and reactor up-scaling effects. Water Sci Technol 2000;41(4-5):309–16.
  • [2] Lee S, Basu S, Tyler CW, Wei IW. Ciliate populations as bio-indicators at deer island treatment plant. Adv Environ Res 2004;8(3-4):371–8.
  • [3] Salvado H, Gracia MP, Amigo JM. Capability of ciliated protozoa as indicators of effluent quality in activated sludge plants. Water Res 1995;29(4):1041–50.
  • [4] Martin-Cereceda M, Perez-Uz B, Serrano S, Guinea A. Dynamics of protozoan and metazoan communities in a full scale wastewater treatment plant by rotating biological contactors. Microbiol Res 2001;156(3):225–38.
  • [5] Lin H, Li T, Zhou B, Xing Y. Microbiology of environmental engineering. Beijing, China: Metallurgical Industry Press; 2008.
  • [6] Greenwood SJ, Sogin ML, Lynn DH. Phylogenetic relationships within the class Oligohymenophorea phylum Ciliophora inferred from the complete small subunit rRNA gene sequences of Colpidium campylum, Glaucoma chattoni and Opisthonecta henneguyi. J Mol Evol 1991;33(2):163–74.
  • [7] Bernhard D, Leipe DD, Sogin ML, Schlegel KM. Phylogenetic relationships of the Nassulida within the phylum Ciliophora inferred from the complete small subunit rRNA gene sequences of Furgasonia blochmanni, Obertrumia georgiana and Pseudomicrothorax dubius. J Eukaryot Microbiol 1995;42(2):126–33.
  • [8] Tadeusiewicz R. How intelligent should be system for image analysis?. Berlin, Heidelberg, New York: Springer Verlag; 2011. p. V–X.
  • [9] Tadeusiewicz R. What does it means ‘‘automatic understanding of the images’’?IEEE International Workshop on Imaging Systems and Techniques; 2007. pp. 1–3.
  • [10] Kato T. Database architecture for content-based image retrieval. Image Storage Retr Syst 1992;1662:112–23.
  • [11] Smeulders AWM, Worring M, Santini S, Gupta A, Jain R. Content-based image retrieval at the end of the early years. Pattern Anal Mach Intell 2000;22(12):1349–80.
  • [12] Rulaningtyas R, Suksmono AB, Mengko TLR. Automatic classification of tuberculosis bacteria using neural network. International Conference on Electrical Engineering and Informatics (ICEEI), 17–19 July 2011, Bandung, Indonesia. 2011. pp. 1–4.
  • [13] Yeom S, Moon I, Javidi B. Real-time 3-D sensing nisualization and recognition of dynamic biological microorganisms. Proc IEEE 2006;94(3):550–66.
  • [14] Li X, Chen C. An improved BP neural network for wastewater bacteria recognition based on microscopic image analysis. WSEAS Trans Comput 2009;8(2):237–47.
  • [15] Das M, Butterworth F, Das R. Statistical signal modeling techniques for automated recognition of water-borne microbial shapes. IEEE 39th Midwest symposium on Circuits and Systems, vol. 2, 18–21 Aug 1996, Ames, IA, USA; 1996.
  • [16] Ginoris YP, Amaral AL, Nicolau A, Coelho MAZ, Ferreira EC. Recognition of Protozoa and Metazoa using image analysis tools, discriminant analysis, neural networks and decision trees. Anal Chim Acta 2007;595(1–2):160–9.
  • [17] Amaral AL, Baptiste C, Pons MN, Nicolau A, Lima N, Ferreira EC, et al. Semi-automated recognition of protozoa by image analysis. Biotechnol Tech 1999;13(2):111–8.
  • [18] Amaral AL, Motta MD, Pons MN, Vivier H, Roche N, Mota M, et al. Survey of protozoa and metazoa populations in wastewater treatment plants by image analysis and discriminant analysis. Environmetrics 2004;15(4):381–90.
  • [19] Otsu N. A threshold selection method from gray-level histograms. Syst Man Cybernet 1979;9(1):62–6.
  • [20] Kazakova N, Margala M, Durdle NG. Sobel edge detection processor for a real-time volume rendering system. Proceedings of the 2004 International Symposium on Circuits and Systems, 2004. ISCAS '04, vol. 2, 23–26 May 2004; 2004. p. II-913–6.
  • [21] Maini R, Sohal JS. Performance evaluation of Prewitt edge detector for noisy images Graphics. Vision Image Process 2006;6(3):39–46.
  • [22] Jain R, Kasturi R, Schunck BG. Machine vision. New York City, USA: McGraw-Hill, Inc.; 1995.
  • [23] Neycenssac F. Contrast enhancement using the Laplacian-of-a-Gaussian filter. Graph Models Image Process 1993;55 (6):447–63.
  • [24] Clark JJ. Authenticating edges produced by zero-crossing algorithms. Pattern Anal Mach Intell 1989;11(1):43–57.
  • [25] Canny J. A computational approach to edge detection. Pattern Anal Mach Intell 1986;8(6):679–98.
  • [26] Roerdink JBM, Meijster A. The watershed transform: definitions, algorithms and parallelization strategies. Fundam Inform 2000;41(1–2):187–228.
  • [27] Gonzalez RC, Woods RE. Digital image processing. 3rd ed. NJ, USA: Pearson International Edition; 2008.
  • [28] Gonzalez RC, Woods RE, Eddins SL. Digital image processing using MATLAB processing. Upper Saddle River, NJ, USA: Pearson Education, Inc.; 2004.
  • [29] Zhang D, Lu G. A comparative study of curvature scale space and Fourier descriptors for shape-based image retrieval. J Visual Commun Image Represent 2003;14(1):39–57.
  • [30] Donoser M, Riemenschneider H, Bischof H. Efficient partial shape matching of outer contours. Asian Conference on Computer Vision, Xi'an; 2009. pp. 281–92.
  • [31] Jiang Y, Yang J, Ngo C, Hauptmann AG. Representations of keypoint-based semantic concept detection: a comprehensive study. IEEE Trans Multimedia 2010;12(1): 42–53.
  • [32] Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vision 2004;60(2):91–110.
  • [33] Guo G, Dyer CR. Learning from examples in the small sample case: face expression recognition. Syst Man Cybernet-Part B: Cybernet 2005;35(3):477–88.
  • [34] Vapnik V. Statistical learning theory. New York, USA: Wiley-Interscience; 1998.
  • [35] Snoek CGM, Worring M, Smeulders AWM. Early versus late fusion in semantic video analysis. ACM International Conference on Multimedia; 2005. pp. 399–402.
  • [36] Zhang D, Lu G. A comparative study on shape retrieval using Fourier descriptors with different shape signatures.
  • [37] Chang C, Lin C. LIBSVM: a library for support vector machines. Intell Syst Technol 2011;2(3):27:1–27:27.
  • [38] Platt JC. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. USA: Massachusetts Institute of Technology; 1999. pp. 61–74 (Chapter 5).
  • [39] Kishida K. Property of average precision and its generalization: an examination of evaluation indicator for information retrieval experiments. Tech. Re NII-2005-E014E. National Institute of Informatics; 2005.
  • [40] Maron O, Ratan AL. Multiple-instance learning for natural scene classification. Proceedings of the Fifteenth International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 1998. pp. 341–9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1fe3643-18b1-4425-907b-1232970ab753
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.