PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Asymmetrical melting and solidification processes of phase change material and the challenges for thermal energy storage systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The melting and solidification processes of the organic phase change material - lauric acid exposed to air were experimentally studied to investigate the heat exchange and its effect on the heat transfer behaviour inside a shell as well as its phase-change characteristics. Lauric acid was placed in spherical shells made of polyvinyl chloride with diameters of 44, 63, and 74 mm. This study was based on analyses of the surface temperature and vertical temperature distribution data inside the shells. We found that the phase change characteristics were strongly related to the dominant heat transfer mechanism. In this case, melting was dominated by convection, whereas solidification was dominated by conduction. The convection intensity increased as the shell diameter increased. Further analysis revealed the melting and solidification periods. In contrast to latent heat release accompanying solidification, latent heat absorption accompanied by melting does not occur at a constant temperature, although it has a smaller temperature gradient than does sensible heat absorption. Based on the asymmetry between the melting and solidification processes, we discuss various possible strategies by which to control the charging and discharging of the phase change material by restraining the heat transfer rate to optimise its performance as a latent thermal energy storage material.
Rocznik
Strony
135--147
Opis fizyczny
Bibliogr. 75 poz., rys.
Twórcy
  • Physics Department, FMIPA, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
autor
  • Physics Department, FMIPA, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
  • Physics Department, FMIPA, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
  • Physics Department, FMIPA, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
  • Physics Department, FMIPA, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
  • Building Technology Research Group, SAPPK, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
Bibliografia
  • [1] Magendran, S.S., Saleem, F., Khan, A., Mubarak, N.M., & Vaka, M. (2019). Synthesis of organic phase change materials (PCM) for energy storage applications : A review. Nano-Structures & Nano-Objects, 20, 100399. doi: 10.1016/j.nanoso.2019.100399
  • [2] Fleischer, A.S. (2015). Thermal energy storage using phase change materials: Fundamentals and applications. Springer Briefs in Applied Sciences and Technology. Springer Cham. doi:10.1007/978-3-319-20922-7
  • [3] Sari, A. (2003). Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications, Energy Conversion and Management, 44(14), 2277–2287. doi:10.1016/S0196-8904(02)00251-0
  • [4] Sarı, A., & Kaygusuz, K. (2003). Some fatty acids used for latent heat storage : thermal stability and corrosion of metals with respect to thermal cycling. Renewable Energy, 28, 939–948. doi:10.1016/S0960-1481(02)00110-6
  • [5] Majó, M., Sánchez, R., Barcelona, P., García, J., Fernández, A.I., & Barreneche, C. (2021). Degradation of fatty acid phase-change materials (PCM): New approach for its characterization. Molecules, 26(4), 1–11. doi: 10.3390/molecules26040982
  • [6] Kahwaji, S., Johnson, M.B., Kheirabadi, A.C., Groulx, D., & White, M.A. (2017). Fatty acids and related phase change materials for reliable thermal energy storage at moderate temperatures. Solar Energy Materials and Solar Cells, 167, 109–120. doi: 10.1016/j.solmat.2017.03.038
  • [7] Rozanna, D., Chuah, T.G., Salmiah, A., Choong, T.S.Y., & Sa’ari, M. (2005). Fatty Acids as Phase Change Materials (PCMs) for Thermal Energy Storage: A Review. International Journal of Green Energy, 1(4), 495–513. doi: 10.1081/ge200038722
  • [8] Nazari, M., Jebrane, M., & Terziev, N. (2021). Multicomponent bio-based fatty acids system as phase change material for low temperature energy storage. Journal of Energy Storage, 39,10264. doi: 10.1016/j.est.2021.102645
  • [9] Duquesne, M., Mailhé, C., Doppiu, S., Dauvergne, J.L., Moreno, S.S., Godin, A., Fleury, G., Rouault, F., & del Barrio, E.P. (2021). Characterization of Fatty Acids as Biobased Organic Materials for Latent Heat Storage. Materials, 14(16), 4707. doi: 10.3390/ma14164707
  • [10] Kurdi, A., Almoatham, N., Mirza, M., Ballweg, T., & Alkahlan, B. (2021). Potential phase change materials in building wall construction − a review. Materials, 14, 18. doi: 10.3390/ma14185328
  • [11] Hyun, D.C., Levinson, N.S., Jeong, U., & Xia, Y. (2014). Emerging applications of phase-change materials (PCMs): Teaching an old dog new tricks. Angewandte Chemie International Edition, 53(15), 3780–3795. doi: 10.1002/anie.201305201
  • [12] Zare, M., & Mikkonen, K.S. (2023). Phase Change Materials for Life Science Applications. Advanced Functional Materials, 33,2213455. doi: 10.1002/adfm.202213455
  • [13] Rathore, P.K.S., & Shukla, S.K. (2019). Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review. Construction and Building Materials,225, 723–744. doi: 10.1016/j.conbuildmat.2019.07.221
  • [14] Liu, Z., Teng, R., & Sun, H. (2022). Application of Phase Change Energy Storage in Buildings: Classification of Phase Change Materials and Packaging Methods. Thermal Science, 26(5), 4315–4332. doi: 10.2298/TSCI211122045L
  • [15] Liu, Z., Yu, Z.(J.), Yang, T., Qin, D., Li, S., Zhang, G., Haghighat, F., & Joybari, M.M. (2018). A review on macroencapsulated phase change material for building envelope applications. Building and Environment, 144, 281–294. doi:10.1016/j.buildenv.2018.08.030
  • [16] Wonorahardjo, S., Sutjahja, I.M., & Kurnia, D. (2019). Potential of Coconut Oil for Temperature Regulation in Tropical Houses. Journal of Engineering Physics and Thermophysics, 92(1),80−88. doi: 10.1007/s10891-019-01909-7
  • [17] Wonorahardjo, S., Sutjahja, I.M., Damiati, S.A., & Kurnia, D. (2020). Adjustment of indoor temperature using internal thermal mass under different tropical weather conditions. Science and Technology for the Built Environment, 26(2), 115–127. doi:10.1080/23744731.2019.1608126
  • [18] Wei, J., Kawaguchi, Y., Hirano, S., & Takeuchi, H. (2005). Study on a PCM heat storage system for rapid heat supply. Applied Thermal Engineering, 25(17–18), 2903–2920. doi: 10.1016/j.applthermaleng.2005.02.014
  • [19] Archibold, A.R., Gonzalez-Aguilar, J., Rahman, M.M., Yogi Goswami, D., Romero, M., & Stefanakos, E.K. (2014). The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells. Applied Energy, 116, 243–252. doi: 10.1016/j.apenergy.2013.11.048
  • [20] Cengel, Y.A. (2002). Heat Transfer, A Practical Approach, (2nd ed.). McGraw Hill.
  • [21] Tan, F.L. (2008). Constrained and unconstrained melting inside a sphere. International Communications in Heat Mass Transfer,35(4), 466–475. doi: 10.1016/j.icheatmasstransfer.2007.09.008
  • [22] Kothari, R., Revankar, S.T., Sahu, S.K., & Kundalwal, S.I. (2020). A comparative study of constrained and unconstrained melting inside a sphere. International Conference on Nuclear Engineering Collacated with the ASME 2020 Power Conference, ICONE 3, V003T12A002. 4-5 August, Virtual conference. doi:10.1115/ICONE2020-16056.
  • [23] Goel, V., Dwivedi, A., Kumar, R., Kumar, R., Pandey, A.K., Chopra, K., & Tyagi, V.V. (2023). PCM-assisted energy storage systems for solar-thermal applications: Review of the associated problems and their mitigation strategies. Journal of Energy Storage, 69, 107912. doi: 10.1016/j.est.2023.107912
  • [24] Du, K., Calautit, J., Wang, Z., Wu, Y., & Liu, H. (2018). A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Applied Energy, 220, 242–273. doi: 10.1016/j.apenergy.2018.03.005
  • [25] Rizan, M.Z.M., Tan, F.L., & Tso, C.P. (2012). An experimental study of n-octadecane melting inside a sphere subjected to constant heat rate at surface. International Communications in Heat Mass Transfer, 39(10), 1624–1630. doi: 10.1016/j.icheatmasstransfer.2012.08.003
  • [26] Galione, P.A., Lehmkuhl, O., Rigola, J., & Oliva, A. (2015). Fixed-grid numerical modeling of melting and solidification using variable thermo-physical properties - Application to the melting of n-Octadecane inside a spherical capsule. International Communications in Heat Mass Transfer, 86, 721–743. doi:10.1016/j.ijheatmasstransfer.2015.03.033
  • [27] Hosseinizadeh, S.F., Rabienataj Darzi, A.A., Tan, F.L., & Khodadadi, J.M. (2013). Unconstrained melting inside a sphere. International Journal of Thermal Sciences, 63, 55–64. doi:10.1016/j.ijthermalsci.2012.07.012
  • [28] Tan, F.L., Hosseinizadeh, S.F., Khodadadi, J.M., & Fan, L. (2009). Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. International Journal of Heat and Mass Transfer, 52(15–16), 3464–3472. doi: 10.1016/j.ijheatmasstransfer.2009.02.043
  • [29] Ismail, K.A.R., & Moraes, R.I.R. (2009). A numerical and experimental investigation of different containers and PCM options for cold storage modular units for domestic applications. International Journal of Heat and Mass Transfer, 52, 4195–4202.doi: 10.1016/j.ijheatmasstransfer.2009.04.031
  • [30] Ettouney, H., El-Dessouky, H., & Al-Ali, A. (2005). Heat transfer during phase change of paraffin wax stored in spherical shells, Journal of Solar Energy Engineering, 127(3), 357–365. doi:10.1115/1.1850487
  • [31] Cofré-Toledo, J., Roa-Cossio, D., Vasco, D.A., Cabeza, L.F., & Rouault, F. (2022). Numerical simulation of the melting and solidification processes of two organic phase change materials in spherical enclosures for cold thermal energy storage applications. Journal of Energy Storage, 51, 104337. doi: 10.1016/j.est.2022.104337
  • [32] Assis, E., Katsman, L., Ziskind, G., & Letan, R. (2007). Numerical and experimental study of melting in a spherical shell. International Journal of Heat and Mass Transfer, 50(9–10),1790–1804. doi: 10.1016/j.ijheatmasstransfer.2006.10.007
  • [33] Li, W., Li, S.G., Guan, S., Wang, Y., Zhang, X., & Liu, X. (2017). Numerical study on melt fraction during melting of phase change material inside a sphere. International Journal of Hydrogen Energy, 42(29), 18232–18239. doi: 10.1016/j.ijhydene.2017.04.136
  • [34] Ghosh, D., Guha, C., & Ghose, J. (2019). Numerical investigation of paraffin wax solidification in spherical and rectangular cavity. Heat Mass Transfer, 55, 3547–3559. doi: 10.1007/s00231-019-02680-4
  • [35] Nazzi Ehms, J.H., De Césaro Oliveski, R., Oliveira Rocha, L.A., & Biserni, C. (2018). Theoretical and numerical analysis on phase change materials (PCM): A case study of the solidification process of erythritol in spheres. International Journal of Heat and Mass Transfer, 119, 523–532. doi: 10.1016/j.ijheatmasstransfer. 2017.11.124
  • [36] Assis, E., Ziskind, G., & Letan, R. (2009). Numerical and experimental study of solidification in a spherical shell. Journal of Heat and mass Transfer, 131(2), 024502. doi: 10.1115/1.2993543
  • [37] Li, W., Wang, Y.H., & Kong, C.C. (2015). Experimental study on melting/solidification and thermal conductivity enhancement of phase change material inside a sphere. International Communications in Heat Mass Transfer, 68, 276–282. doi:10.1016/j.icheatmasstransfer.2015.09.004
  • [38] Prabakaran, R., Kumar, J.P.N., Mohan Lal, D., Selvam, C., & Harish, S. (2020). Constrained melting of graphene-based phase change nanocomposites inside a sphere. Journal of Thermal Analysis and Calorimetry, 139(2), 941–952. doi: 10.1007/s10973-019-08458-4
  • [39] Sutjahja, I.M., Anggraini, Y., & Yusuf, A. (2024). Acceleration of Heat Discharge of Composite Lauric Acid Using Magnetic Dopant. Journal of Energy Storage, 86, 111219. doi: 10.1016/j.est.2024.111219
  • [40] Shokouhmand, H., & Kamkari, B. (2013). Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit. Experimental Thermal and Fluid Science, 50, 201–212. doi: 10.1016/j.expthermflusci.2013.06.010
  • [41] Sattari, H., Mohebbi, A., Afsahi, M.M., & Yancheshme, A.A. (2017). CFD simulation of melting process of phase change materials (PCMs) in a spherical capsule. International Journal of Refrigeration, 73, 209–218. doi: 10.1016/j.ijrefrig.2016.09.007
  • [42] Khodadadi, J.M., & Zhang, Y. (2001). Effects of buoyancydriven convection on melting within spherical containers. International Journal of Heat and Mass Transfer, 44(8), 1605–1618. doi: 10.1016/S0017-9310(00)00192-7
  • [43] Chan, C.W., & Tan, F.L. (2006). Solidification inside a sphere - An experimental study. International Communications in Heat Mass Transfer, 33(3), 335–341. doi: 10.1016/j.icheatmasstransfer.2005.10.010
  • [44] Revankar, S.T., & Croy, T. (2007). Visualization study of the shrinkage void distribution in thermal energy storage capsules of different geometry. Experimental Thermal and Fluid Science,31(3), 181–189. doi: 10.1016/j.expthermflusci.2006.03.026
  • [45] Peck, J.H., Kim, J.J., Kang, C., & Hong, H. (2006). A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method. International Journal of Refrigeration, 29(7), 1225–1232. doi: 10.1016/j.ijrefrig.2005.12.014
  • [46] Yinping, Z., & Yi, J. (1999). A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Measurement Science and Technology, 10(3), 201–205. doi: 10.1088/0957-0233/10/3/015
  • [47] Hong, H., Kim, S.K., & Kim, Y.S. (2004). Accuracy improvement of T-history method for measuring heat of fusion of various materials. International Journal of Refrigeration, 27, 360–366. doi: 10.1016/j.ijrefrig.2003.12.006
  • [48] Sutjahja, I.M., Silalahi, A., Kurnia, D., & Wonorahardjo, S. (2018). Thermophysical parameters and enthalpy-temperature curve of phase change material with supercooling from T-history data. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 80(2), 57–70.
  • [49] Lago, T.G.S., Ismail, K.A.R., Lino, F.A.M., & Arabkoohsar, A. (2020). Experimental correlations for the solidification and fusion times of PCM encapsulated in spherical shells. Experimental Heat Transfer, 33(5), 440–454. doi: 10.1080/08916152.2019.1656301
  • [50] Ismail, K.A.R., & Moraes, R.I.R. (2009). A numerical and experimental investigation of different containers and PCM options for cold storage modular units for domestic applications. International Journal of Heat and Mass Transfer, 52, 19–20,4195–4202. doi: 10.1016/j.ijheatmasstransfer.2009.04.031
  • [51] Chandrasekaran, P., Cheralathan, M., & Velraj, R. (2015). Influence of the size of spherical capsule on solidification characteristics of DI (deionized water) water for a cool thermal energy storage system  An experimental study. Energy, 90, 807–813. doi:10.1016/j.energy.2015.07.113
  • [52] Diaconu, B.M., Cruceru, M., & Anghelescu, L. (2023). A critical review on heat transfer enhancement techniques in latent heat storage systems based on phase change materials. Passive and active techniques, system designs and optimization, Journal of Energy Storage, 61, 106830. doi: 10.1016/j.est.2023.106830
  • [53] Jegadheeswaran, S., Sundaramahalingam, A.,, &, Pohekar, S.D. (2021). Alternative Heat Transfer Enhancement Techniques for Latent Heat Thermal Energy Storage System: A Review. International Journal of Thermophysics, 42, 171. doi: 10.1007/s10765-021-02921-x
  • [54] Sutjahja, I.M., Silalahi, A.O., Wonorahardjo, S., & Kurnia, D. (2019). Thermal conductivity of phase-change material CACL2·6H2O with ZnO nanoparticle dopant based on temperature-history method. Revista Romana de Materiale / Romanian Journal of Materials, 49(2), 185–192
  • [55] Sutjahja, I.M., Silalahi, A.O., Kurnia, D., & Wonorahardjo S. (2019). The role of particle dopant to the thermal conductivities of PCM coconut oil by means of the T-history method. Journal of Physics: Conference Series, 1204, 012056. The 7th Asian Physics Symposium, 29-31 August 2017, Bandung, Indonesian. doi:10.1088/1742-6596/1204/1/012056
  • [56] Jourabian, M., Farhadi, M., & Rabienataj Darzi, A.A. (2016). Heat transfer enhancement of PCM melting in 2D horizontal elliptical tube using metallic porous matrix. Theoretical and Computational Fluid Dynamics, 30, 579–603. doi: 10.1007/s00162-016-0402-0
  • [57] Sayehvand, H.-O., Abolfathi, S., & Keshavarzian, B. (2023). Investigating heat transfer enhancement for PCM melting in a novel multi-tube heat exchanger with external fins. Journal of Energy Storage, 72, 108702. doi: 10.1016/j.est.2023.108702
  • [58] Zhao, C.Y., Zhou, D., & Wu, Z.G. (2011). Heat transfer of phase change materials (PCMs) in porous materials. Frontiers in Energy, 5, 174–180. doi: 10.1007/s11708-011-0140-3
  • [59] Rostami, J. (2021). Convective heat transfer by micro-encapsulated PCM in a mini-duct. International Journal of Thermal Sciences, 161, 106737. doi: 10.1016/j.ijthermalsci.2020.106737
  • [60] Wu, Y., Zhang, X., Xu, X., Lin, X., & Liu, L. (2020). A review on the effect of external fields on solidification, melting and heat transfer enhancement of phase change materials, Journal of Energy Storage, 31, 101567. doi: 10.1016/j.est.2020.101567
  • [61] Zhang, N., & Du, Y. (2018). Ultrasonic enhancement on heat transfer of palmitic-stearic acid as PCM in unit by experimental study. Sustainable Cities and Society, 43, 532–537. doi: 10.1016/j.scs.2018.08.040
  • [62] Sun, Z., Zhang, Y., Luo, K., Pérez, A.T., Yi, H., & Wu, J. (2022). Experimental investigation on melting heat transfer of an organic material under electric field. Experimental Thermal and Fluid Science, 131, 110530. doi: 10.1016/j.expthermflusci.2021.110530
  • [63] Shahriari, A., Acharya, P.V., Carpenter, K., & Bahadur, V. (2017). Metal-Foam-Based Ultrafast Electronucleation of Hydrates at Low Voltages. Langmuir, 33(23), 5652–5656. doi:10.1021/acs.langmuir.7b00913
  • [64] Carpenter, K., & Bahadur, V. (2016). Electronucleation for Rapid and Controlled Formation of Hydrates. Journal of Physical Chemistry Letters, 7(13), 2465–2469. doi: 10.1021/acs.jpclett.6b01166
  • [65] Sutjahja, I.M., Rahman, A., Putri, R.A., Swandi, A., Anggraini, R., Wonorahardjo, S., Kurnia, D., & Wonorahardjo, S. (2019). Electrofreezing of the phase-change material CaCl2· 6H2O and its impact on supercooling and the nucleation time. Hemijska Industrija, 73, 363–374. doi: 10.2298/ HEMIND190803034S
  • [66] Putri, R.A., Yusuf, A., Rahman, A., Anggraini, Y., Kurnia, D., Wonorahardjo, S., Wonorahardjo, S., & Sutjahja, I.M. (2021). Reduction of the supercooling of Ca(NO3)2•4H2O using electric field and nucleating agent effects. Journal of Energy Storage, 42, 103020. doi: 10.1016/j.est.2021.103020
  • [67] Swandi, A., Rahman, A., Putri, R.A., Anggraini, R., Kurnia, D., Wonorahardjo, S., & Sutjahja, I.M. (2021). Effect of copper electrode geometry on electrofreezing of the phase-change material CaCl2·6H2O. Journal of Non-Equilibrium Thermodynamics, 46(2), 163-174. doi: 10.1515/jnet-2020-0066
  • [68] Anggraini, Y., Yusuf, A., Viridi, S., Kurnia, D., Wonorahardjo, S., & Sutjahja, I.M. (2024). Magnetic Dopant and Field Effects on the Heat Discharge of Organic PCM based Lauric Acid. Experimental Thermal and Fluid Science, 152, 111105. doi:10.1016/j.expthermflusci.2023.111105
  • [69] Sheikholeslami, M., & Mahian, O. (2019). Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. Journal of Cleaner Production, 215, 963–977. doi: 10.1016/j.jclepro.2019.01.122
  • [70] Zandie, M., Moghaddas, A., Kazemi, A., Ahmadi, M., Feshkache, H.N., Ahmadie, M.H., & Shafripur, M. (2022). The impact of employing a magnetic field as well as Fe3O4 nanoparticles on the performance of phase change materials. Engineering Applications of Computational Fluid Mechanics, 16(1), 196–214.doi: 10.1080/19942060.2021.2006092
  • [71] Haddad, Z., Iachachene, F., Zidouni, F., & Oztop, H.F. (2022). Magnetic field effects on melting and solidification of PCMs in an isosceles triangular cavity. Journal of Thermal Analysis and Calorimetry, 147, 4697–4709. doi: 10.1007/s10973-021-10857-5
  • [72] Yusuf, A., Putri, R.A., Rahman, A., Anggraini, Y., Kurnia, D., Wonorahardjo, S., & Sutjahja, I.M. (2021). Time-Controlling the Latent Heat Release of Fatty Acids using Static Electric Field. Journal of Energy Storage, 33, 102045. doi: 10.1016/j.est.2020.102045
  • [73] Rahman, A., Yusuf, A., Putri, R.A., Anggraini, Y., Pujaningsih, F.B., Kurnia, D., Wonorahardjo, S., & Sutjahja, I.M. (2021). Effect of static magnetic field on nucleation of cobalt nitrate hexahydrate. Materials Research, 24(6), e20210088. doi: 10.1590/1980-5373-MR-2021-0088
  • [74] Zemansky, M.W., & Dittman, R.H. (1997). Heat and Thermodynamics. McGraw-Hill.
  • [75] Ibáñez, M., Dieball, C., Lasanta, A., Godec, A., & Rica, R.A. (2024). Heating and cooling are fundamentally asymmetric and evolve along distinct pathways. Nature Physics, 20(1), 135–141. doi: 10.1038/s41567-023-02269-z
Uwagi
[1] This study presents the output of the P2MI ITB 2024 research scheme.
[2] Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1f9e24c-621f-4501-a862-783b511f59b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.