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Abstract 
The article presents the results of compliance with effects of impact wave course and the resulting orbital mo-

tions on the accuracy of the gyrocompass. 

 

 

Introduction 

In stormy weather, when a ship is affected by 

wave action, the ship’s centre of gravity begins to 

move along a curvilinear trajectory. The movement 

track is a result of lateral and orbital motions. The 

influence of lateral motions on gyrocompass accu-

racy has been studied and described in detail at  

[1, 2, 3], and the value of rolling deviation caused 

by such motions (R) for a single gyroscope com-

pass is expressed by the formula: 
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where: 

B – module of pendulum moment at gyro-

scope sensor of the compass; 

θ – amplitude of angle heel; 

R – frequency of rolling motions; 

l – distance between the centre of rolling 

and sensor; 

g – acceleration of gravity; 
Н – kinetic moment of the gyroscope; 

Ω – angular speed of earth’s revolving 

around its axis; 

φ – latitude; 

СС – compass course.  

As the value of deviation depends on the dou-

bled compass course 2СС, it is often referred to as 

intercardinal deviation. It assumes maximum values 

on courses 45, 135, 225 and 315. 

 

It follows from the formula above that if the gy-

rocompass is in the centre of rolling motions (l = 0), 

deviation does not occur. Such gyroscope position-

ing would be an ideal solution, but in practice it is 

impossible because orbital motions also affect the 

motion centre track. 

During orbital motions, ship’s centre of gravity 

moves in the plane of wave propagation, along an 

elliptical track, or spherical track in a particular 

case. The phenomenon was investigated and de-

scribed in detail by A.N. Krylov, who did research 

onboard the cruiser Petropavlovsk [4]. 

The impact of orbital motions on the cruiser’s 

centre of gravity movement track depending on 

wave relative bearing (α) and for various ship’s 

speeds (V) is shown in the diagram (Fig. 1). 

When the ship is in motion, linear acceleration 

components jw and js occur, related to the force of 

inertia. Their direction conforms with the lines of 

the meridian and the parallel. This phenomenon 

causes deviations of orbital motions 0. The prob-

lem has not been discussed in the literature yet. 

Without examining this phenomenon first, it cannot 

accurately analyze the effectiveness of methods for 

reducing the impact of motions on gyrocompass 

accuracy.  

The profile of gyrocompass motion around 

a point O along a circular trajectory, caused by 

orbital motions, at frequency R is shown graph-

ically (Fig. 2). 
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Fig. 1. Impact of orbital motions on the cruiser’s centre of 

gravity track depending on wave relative bearing and various 

speeds of the ship [4] 

 

Fig. 2. Gyrocompass motion caused by orbital motions 

The gyrocompass displacement due to orbital 

motions in the direction of wave movement, is ex-

pressed by equation: 

 trX Kcos  (2) 

As a result of circular movement an acceleration 

JX is created (Fig. 3), consisting of two compo-

nents: JW and JS. 

Acceleration in the horizontal direction JX, along 

the XX axis (Fig. 3) is determined by the formula: 

 trxJ RRX  cos2   (3) 

The force of inertia FX of gyroscope sensor  

centre of gravity caused by the acceleration JX is 

defined by formula: 

 tMrxMF KRX  cos2   (4) 

where: M – mass of the gyroscope sensor. 

 

Fig. 3. Accelerations and forces of ship’s orbital motions 

That forces may be decomposed into two com-

ponents, FN and FW, acting along the axes NS and 

EW: 
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where: CW – the course of the wave.  

The acting forces create moments of forces  

directed along the gyrocompass sensor axes: ХХ, 

YY and ZZ. 

 













WRRNZ

WRRNY

WRREX

CtMaraFL

CtMaraFL

CtMaraFL

coscossin

coscos

sincos

2

2

2

(6) 

where:  

r  – amplitude of orbital motions; 

t  – time; 

sinψ ≈ ψ – for small values of the angle ψ. 

Taking into account the acting moments of forc-

es, we can write the equations of a single gyroscope 

pendulum type gyrocompass in these forms:  

 WRR CtMarHBH coscossin 2    

   WRR CtMarHH coscoscos 2  

 WRR CtMarBI sincos2    (7) 

The equations of sensor spin of such compass 

around the axis ХХ do not depend on coordinates α 

and β or their derivatives, and have this form: 

 WR
R Ct

g
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where:  

q – circular frequency of gyrocompass sensor 

at free oscillations around the axis ХХ;  

B = Mga – module of the moment of a pendu-

lum gyroscope sensor. 

V = 0 V = 8 w V = 10 w 

 = 0 

 = 22.5 

 = 45 

 = 67.5 

 = 90 

 = 112.5 

 = 135 

 = 157.5 

 = 180 
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The most interesting partial solution of the dif-

ferential equation (8) takes this form:  
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Bearing in mind that Rq  , we can present 

the formula (9) as: 
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The differential equations (7) of the gyrocom-

pass according coordinates α and β, accounting for 

the solution (10) assume this form:  
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Elementary trigonometric transformations of the 

formulas (6) and (11) permit to write the equation 

(11) as:  
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The gyrocompass filters high frequency excita-

tions R, but constant components of these excita-

tions cause constant deviations which have the  

values: 
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An analysis of the above formulas leads to 

a conclusion that the coordinate P does not depend 

on orbital motions or ship’s rolling.  

The coordinate P describes the deviation 

caused by orbital motions. In this connection we 

can write: 
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One can see there is no method of reducing the 

deviation from orbital motions, because the orbital 

motions amplitude r is a function of wave height.  

This type of deviation, unlike the deviation from 

rolling, does not depend on ship’s course, but it 

depends on wave direction course CW. This means 

that if orbital motions occur, they affect all ships 

without exception (regardless of the ship’s course).  

This quality of orbital motion is the most bad 

problem of gyrocompass accuracy in case of wave 

action. It also substantially increases the total value 

of the deviation caused by ship’s motions. This 

factor has a particularly significant influence on 

gyrocompass accuracy on relatively small vessels, 

where strong ship’s motions are observed, conse-

quently, the phenomenon of orbital motions is also 

strong.  

For instance can be used the gyrocompass 

“Kurs-4” (single gyroscope), with the following 

working parameters: 

H = 15.55 Nms; 

B = 0.657 Nm; 

 = 7.2910
–5

 s
–1

; 

l = 5 m; 0 = 20 (0.349 rad); 

R = 0.5 s
–1

; 

(R = 12.6 s) CC = 45; 

 = 60; 

g = 9.81 ms
–2

. 

The deviation from rolling is R = 32.9. With 

the above gyrocompass parameters, and an assumed 

radius of orbital motions r = 2.5 m, the deviation 

from orbital motions 0 = 67.4. 

The formula of total deviation S, including de-

viations of rolling and deviation of orbital motions, 

has this form: 
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The conclusions from an analysis of the formula 

(15) are as follows: 
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When a compass course CC and wave course CW 

are simultaneously cardinal courses at any combi-

nation, the motions deviation equals zero. 

When the course CW is a cardinal course, and 

a compass course CC is an intercardinal course, the 

motions deviation equals:  
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When the course CW is intercardinal, but the 

compass course СС is a cardinal course, then the 

motions deviation is equal to: 
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If the compass and wave courses СС and CW  

are intercardinal, the same or opposite, the motions 

deviation can be written in this form: 
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If the intercardinal courses CW and СС are  

orthogonal (perpendicular), the motions deviation 

assumes the maximum of possible values: 
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A comparison of all five characteristic combina-

tions of the courses shows that the worst situation 

occurs when the intercardinal courses СС and CW 

happen to be orthogonal. Consequently, the worst 

course СС and CW combinations can be briefly 

presented in the table below:  

 
CC  CW 

45 or 225 135 or 315 

135 or 315 45 or 225 

 

The presented material allows to make a deep 

analysis of the process of creating gyrocompass 

motions-induced deviation, which may lead to 

a development of methods of deviation reduction.  

To date, the most effective method of preventing 

motion-induced deviations has been the one using 

two-gyroscope sensors. 

The deviation from rolling of a two-gyroscope 

compass sensor [1, 2, 3] may be described by the 

formula: 
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where: 

R – period of ship motions in waves; 

 – period of sensor motions around its main 

axis ХХ.  

The coefficient (R
2
/

2
) represents the reduction 

of ship motion impact on the two-gyroscope com-

pass indications.  

Taking into account simultaneous rolling and 

orbital motions, the formula describing the devia-

tion of a two-gyroscope compass gets this form: 
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Designers state that typical gyrocompasses of 

“Kurs-4” or “Standard” type have a motions devia-

tion reduction coefficient equal to 0.0003. It can be 

mind that such coefficient can reduce the deviation 

before nearly zero. However, the real compasses at 

stormy condition has a deviation from 1.5 to 2.5. 

It takes place from reason of influence at stormy 

weather the oil damper [1, 2, 3] and other reasons. 

A single-gyro compass, unaffected by ship’s 

motions, still remains manufacturers’ and seafarers’ 

dream. 
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