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ABSTRACT  

The paper describes a problem and an algorithm for simultaneous localization and mapping 

(SLAM) for an unmanned aerial vehicle (UAV). The algorithm developed by the authors 

estimates the flight trajectory and builds a map of the terrain below the UAV. As a tool for 

estimating the UAV position and other parameters of flight, a particle filter was applied. The 

proposed algorithm was tested and analyzed by simulations and the paper presents a simula-

tor developed by the authors and used for SLAM testing purposes. Chosen simulation results, 

including maps and UAV trajectories constructed by the SLAM algorithm are included in the 

paper. 
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1. INTRODUCTION 

A wide spectrum of complex tasks for modern robotics systems demands that 

various robotic platforms should be increasingly self-sufficient. The requirement of 

autonomy is often imposed on unmanned aerial vehicles (UAVs) flying beyond the 

line of sight of their operators. Autonomous UAVs often must be able to operate in 

unknown or even dynamically changing environment and apart from estimating their 

position be capable of correct interpretation of the surroundings. This is a problem 

identified in the technical literature as simultaneous localization and mapping 

(SLAM) [Thrun et al., 2005]. 

SLAM consists in concurrent estimation of locations of characteristic features of 

the environment (landmarks) and the state of the robot, including its position, veloci-
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ty and orientation, using autonomous on-board sensors. Solving the SLAM problem 

can be divided into several tasks, each requiring a distinct approach, such as land-

mark extraction, data association, state estimation and map update. 

SLAM capable platforms offer two main advantages. Firstly, the robot remains 

fully operational without the use of external signals, e.g. from Global Navigation 

Satellite Systems (GNSS). This allows it to explore areas with limited availability of 

GNSS, e.g. indoors or contemporary battlefields where use of jamming is highly 

probable. Moreover, a SLAM robot performs a constant environment analysis, iden-

tifying landmarks locations and combining them into a globally consistent map. The 

map is later used in robot’s navigation process. Thus, SLAM platforms can operate 

in previously unvisited surroundings and even distribute the acquired map among 

the cooperating UAVs [Howard, 2006]. 

However, the SLAM intrinsic feature of interdependency between the need of 

precise robot’s location to acquire map and the need of a precise map to properly 

estimate its location is a complex problem to address. During last 30 years of SLAM 

development, there were several characteristic approaches to solve concurrent local-

ization and mapping problem. To properly list various technics used, it is necessary 

to divide SLAM architecture into a front-end and a back-end component. The front-

end component consists in landmarks extraction whereas the back-end one is re-

sponsible for map and localization estimation. 

Initially, extraction of features was performed with the use of data from sonar 

sensors or laser rangefinders [Leonard at al., 1992, Bailey at al., 2006]. Since the 

computational complexity of image processing became feasible for modern comput-

ers, in recent years, various types of cameras, such as monocular camera [Santana et 

al., 2011] or RGB-D camera [Endres et al., 2014] became popular tools for land-

mark extraction. Many authors adopted different feature extraction algorithms suita-

ble for processing images in SLAM. The most commonly used algorithms are SIFT 

and SURF, which are based on gradient histogram feature descriptors or their less 

computationally expensive alternatives such as BRIEF, ORB, BRISK and FREAK 

[Hartman et al., 2013], based on binary feature descriptors. 

The back-end component was implemented in three most common ways over the 

years. The earliest approaches were constructed upon Extended Kalman Filter 

(EKF) [Leonard at al., 1990]. Due to its poor approximation of strongly nonlinear 

functions, other solutions were proposed like unscented Kalman filter [Wang et al., 

2013]) or particle filter [Thrun et al., 2002]. Lately, graph-based methods have been 

introduced, which rely on least-squares error minimization [Grisetti et al., 2010]. 

Concurrent localization and mapping, due to its complexity, is still an open re-

search field for new approaches, including more robust and more efficient algo-
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rithms [Cadena et al., 2016]. From the authors’ perspective, it is also a very im-

portant and interesting problem due to its potential significance for military applica-

tions, as it is predicted that future military missions will increasingly rely on 

autonomous platforms, including UAVs or large formations (swarms) of cooperating 

UAVs [Vincent et al., 2004]. 

The further part of the paper is organized as follows. The section 2 describes the 

SLAM algorithm, which was implemented by the authors with the use of 

MATLAB
®
. A SLAM system simulator used for testing this algorithm is presented 

in section 3. The section 4 contains chosen simulation results, which are concluded 

in section 5. 

2. SLAM ALGORITHM 

The front-end part of the SLAM algorithm elaborated by the authors uses SURF 

algorithm to extract features from images. It is assumed that the images are provided 

by a monocular camera installed on board a UAV and directed downwards. The 

back-end component of the algorithm is based upon a particle filter. The particle 

filter is a non-parametric estimation algorithm, which uses a set of samples (parti-

cles) to represent the full probability distribution function (PDF) of the UAV state 

vector and the map elements [Konatowski et al., 2016]. The flowchart of SLAM 

algorithm is shown in Fig. 1. 

 

 
Fig. 1. Flowchart of the SLAM algorithm [Thrun et al., 2005]. 

 

The SLAM algorithm is implemented as a loop composed of a series of steps. 

Each iteration of the loop consists of UAV state prediction, image acquisition from 

the camera (observation), landmarks extraction using SURF algorithm, map update 

and robot's localization update. 

The first step of the presented algorithm consists in prediction of the new locali-

zation of the UAV. The state vector to be estimated in this process consists of nine 
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quantities: three for position, three for velocity and three for orientation. The above 

robot’s state is represented in our algorithm by a large set of particles, which can be 

considered as many possible realizations of the state vector, spread-out in accord-

ance with the PDF. We assume that the UAV is equipped into an Inertial Measure-

ment Unit (IMU) providing measurements of linear accelerations and angular 

velocities. These measurements are composed of true quantities and errors, which 

we model as Gaussian white noises. In the prediction process, the particle filter algo-

rithm generates as many realizations of these errors as many particles exist. The 

generated errors are added to the linear accelerations and angular velocities from 

IMU and the obtained quantities are control signals treated as inputs to a strap-down 

inertial navigation system (SINS) algorithm [Łabowski et al. 2016]. Thus, each par-

ticle receives different controls and we obtain many distinct particles which describe 

PDF of the new predicted robot’s state. This is an implementation of the particle 

filter prediction step, which can be expressed as follows: 

 

𝑥𝑘+1
(𝑖)

~𝑝(𝑥𝑘+1|𝑥𝑘
(𝑖)

, 𝑢𝑘) (1) 

 

where 𝑥𝑘
(𝑖)

 is the state vector of the i
th
 particle during k

-th
 step and uk are controls. 

 

Afterwards, an observation takes place and a fragment of terrain, registered by the 

UAV monocular camera, is analyzed. This is illustrated in Fig. 2. 

 

 
Fig. 2. Illustration of the observation process using a monocular camera installed on UAV.  

The aim of observation is to find characteristic features, that can be used for rela-

tive UAV localization as well as map construction. Those features are commonly 
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called landmarks. Speeded Up Robust Features (SURF) algorithm was chosen for 

searching landmarks in the image. It was selected as it is relatively fast, scale invari-

ant, robust against image transformation and reliable in terms of repeatability [Baya 

et al., 2008]. SURF procedure was developed to find correspondences between im-

ages. The algorithms for feature matching are commonly described in terms of two 

basic components. The first one is a detector of interest points and the second one is 

a feature descriptor. 

The SURF detector determines image pixels around which there are the most 

significant intensity changes. The selection is based on finding the local maxima of 

Hessian matrix determinant according to the expression [Baya et al., 2008]: 

 

 𝑑𝑒𝑡(𝐻𝑎𝑝𝑝𝑟𝑜𝑥) =  𝐷𝑥𝑥𝐷𝑦𝑦 − (0.9𝐷𝑥𝑦)
2
 (2) 

 

where Dii are box filters used for an approximation of second-order scale-normalized 

Gaussian kernels. The box filters used in the detector are shown in Fig. 3. 

 

 
Fig. 1. Box filters in the x, y and xy directions. 

 

The invariance of feature detection in terms of scale is achieved by examining 

image at different scales. It is commonly performed by repeated image convolution 

with box filters of various sizes. As a result, the SURF algorithm indirectly performs 

an analysis of scaled image while performing calculations of the detector simultane-

ously. 

The SURF descriptor is defined by an intensity distribution of pixels in the vicin-

ity of a point that was selected by the detector. It has a form of a 64-element vector 

which is further used by the SLAM algorithm to match corresponding features in 

distinct images. 

On each iteration, the SLAM algorithm is required to point out a predefined 

number of landmarks characterized by the strongest metric as defined in Eq. (2). The 

algorithm makes also sure that the selected landmarks do not lie too close to each 
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other as fragments of the image around landmarks are later used to build a map. If 

the default SURF parameters are too strict to extract enough landmarks, the algo-

rithm lowers the detection threshold, so that no large blank spaces are left on the 

map. 

After landmarks are extracted, there is a need of accurate data association. The 

SLAM algorithm uses described above SURF descriptor to match landmarks. Addi-

tionally, the algorithm confronts the result of descriptors matching against the global 

coordinates of a given landmarks pair. It minimizes a possibility of finding a false 

positive correspondence for similar looking but distant features. If a landmark is not 

matched to any previously observed, the algorithm initializes it as a new landmark. 

After the association of landmarks, SLAM algorithm uses particle filter to update 

the map and the UAV state vector. To simplify filter complexity, Rao-

Blackwellization has been implemented [Thrun et al., 2002]. Rather than computing 

the joint a posteriori PDF: 

 

𝑝(𝑥𝑘+1, 𝑚𝑘+1|𝑥𝑘, 𝑢𝑘 , 𝑧𝑘+1) (3) 

 

about the state vector x and the map m (a set of discovered landmarks), this approach 

marginalizes the map out of the state space, which leads to the following factoriza-

tion: 

 

𝑝(𝑥𝑘+1, 𝑚𝑘+1|𝑥𝑘, 𝑢𝑘 , 𝑧𝑘+1) =  𝑝(𝑥𝑘+1|𝑥𝑘, 𝑢𝑘)𝑝(𝑚𝑘+1|𝑥𝑘+1, 𝑧𝑘+1)    (4) 

 

This way the particle filter is only used for robot’s state calculation while a number 

of Kalman Filters (KFs) manage the calculation of landmarks location for each par-

ticle [Thrun et al., 2002]. Only one map is assigned to a given particle. Marginaliz-

ing a subset of the state space limits the number of particles needed. Rao-

Blackwellization allows to omit a situation where tracking every particle’s position, 

while considering every possible landmark location, increases the number of parti-

cles exponentially over time. 

For all visible landmarks which were identified as previously observed the algo-

rithm commences two fundamental procedures. Firstly, for each particle, the posi-

tions of all these landmarks are estimated by individual KFs, under assumption that 

the particle state contains the true location and orientation of UAV. This way the 

previous landmarks positions, stored in the map, are updated. 

The second step, directly related to the robot’s state update, is calculating parti-

cles weights according to the current mismatch between observed and predicted 
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landmarks locations. The weights are inversely proportional to the difference be-

tween these locations. The particle weights are given by the following expression: 

 

𝑤𝑘+1
(𝑖)

~𝑝(𝑦𝑘+1|𝑥𝑘+1
(𝑖)

) (5) 

 

where 𝑤𝑘+1
(𝑖)

 is a new weight of an i
th
 particle and 𝑦𝑘+1 contains residuals, i.e. differ-

ences between the observed landmarks locations and their predicted values. After 

calculation of weights, their values are normalized so that their sum is one. This way 

the weighted particles can be considered a discrete representation of a posteriori 

PDF. 

To complete the particle filter routine, after weighting each particle and normal-

izing their weights, the algorithm should resample the particles. The resampling is 

based on substituting the particles of lowest weight by new instances of particles of 

highest weight. As the operation is computationally demanding in terms of memory 

usage, a rule limiting the occurrence of resampling operations should be imposed. In 

our algorithm, the so called adaptive resampling is used [Grisetti et al., 2005]. The 

algorithm resamples only during iterations in which the effective number of parti-

cles, given by the equation: 

𝑁𝑒𝑓𝑓 =
1

∑ (𝑤𝑖)2𝑁
𝑖=1

 (6) 

 

falls below a predefined fraction of all the samples. 

3. SIMULATOR OVERVIEW  

In order to analyze the properties of the described SLAM algorithm, the authors 

developed a simulator using MATLAB computing environment. This software of-

fers a wide variety of data analysis tools and significantly facilitates the system 

building process. Its usefulness for SLAM testing was previously demonstrated by 

other researchers [Joan Sola et al., 2009]. 

The prepared MATLAB application is responsible for simulation of robot (UAV) 

motion, generation of environment and images visible by a monocular camera, per-

forming SLAM routine and graphical presentation of its results. For the sake of re-

duction of computational complexity, it is based on several simplifying assumptions. 

The UAV is modeled as a point in 3D space and its movement has only three de-
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grees of freedom. Its motion is constrained only to a horizontal plane located on 

a constant altitude of 100 meters over the terrain. The simulator calculates consecu-

tive robot positions and orientations on the basis of horizontal linear accelerations 

and angular velocities around the vertical axis, as predefined by the user. To model 

the surface below the robot we use concatenated Google Maps images [Google, 

2018] and assume that the terrain is flat. The camera on board UAV points down-

wards, is monochrome and has QVGA resolution, i.e. 320x240 pixels. 

Implementation of the particle filter is based on nested structures. The filter con-

tains an array of particles and an array of their weights. Each particle encapsulates 

UAV state vector and an array of landmark objects. To limit data complexity and 

memory usage, landmark objects consist only of landmark positions and orientations 

of the robot during the observation. The landmarks SURF descriptors and image 

fragments around the landmarks are stored separately and shared by all the particles. 

To facilitate the analysis of the SLAM algorithm the simulator generates several 

graphical objects. The first object illustrates the process of observation of the envi-

ronment using a monocular camera and its example is shown in Fig. 2. 

 

 
Fig. 2. Camera’s view with SURF landmarks. 

 

Another figure generated by the simulator, shown in Fig. 4, presents the image as 

seen by the sensor. Furthermore, currently observed landmarks and the surface 

fragments which are later used for map building (black squares) are also marked. 
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The third graphical object is a figure used to visualize particles distribution and 

weights. A size of each particle is proportional to its weight. An example of this 

graphical object, obtained during simulation, is shown in Fig. 5. 

 

 
Fig. 3. Visualization of particles distribution. 

 

The last figure, shown in Fig. 6, presents the map constructed by the SLAM algo-

rithm. During every iteration, the current particle of the highest weight is chosen. 

Terrain fragments observed around the landmarks are arranged according to the 

coordinates provided by this particle. At the end of each loop of the SLAM algo-

rithm, all figures are updated. 

 

 
Fig. 4. Map building process. 
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4. RESULTS  

The simulator performance was examined by assessing whether it is able to imi-

tate SLAM algorithm as well as visualize its key features. The analyses of particles 

behavior, landmark matching, map building as well as overall performance were 

conducted. 

Fig. 7-10 illustrate how the PDF of the UAV state vector, represented by a set of 

100 particles, changes over time. Fig. 7 shows the particles set during the initial 

phase of the simulation. The particles have similar sizes as the PDF is distributed 

almost uniformly among the samples. The effective number of particles is slightly 

smaller than the true number of particles in the set. 

 

 
Fig. 5. Initial distribution of particles in the process of UAV state vector estimation. 

 

As the SLAM algorithm continues to estimate the changing UAV state vector, 

the particles weights become increasingly varied. This implies that some of the sam-

ples are approximating the robot’s state better and other samples are less probable 

estimates in a filtering process. The effective number of particles decreases until it 

drops below the resampling threshold of 50 particles. Fig. 8 illustrates the last step 

of the algorithm before the resampling. Sizes of the particles differ noticeably and 

their spread is larger than in Fig. 7. 

 

 
Fig. 6. Distribution of particles before the resampling. 
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The distribution of particles after the resampling is presented in Fig. 9. The parti-

cles which had the largest weights prevailed and replaced the samples representing 

less probable estimates. Due to the resampling process, the effective number of par-

ticles increases. 

 

 
Fig. 7. Distribution of particles after the resampling. 

 

Fig. 10 illustrates how, after the resampling, the particles start again to diverge in 

various directions. Consequently, the effective number of particles decreases and the 

whole procedure is repeated. The analysis shows that particles behave in accordance 

with theoretical assumptions. 

 

 
Fig. 8. Distribution of particles in further steps after the resampling. 

 

Another expected feature of our system is an ability of proper landmarks identifi-

cation. Fig. 11 shows how the number of unique landmarks increases during simula-

tion. After the UAV reaches a previously known area, the ratio at which the number 

of unique landmarks is growing decreases more than three times. This indicates that 

while a small number of new features is still detected, most of the landmarks are 

correctly identified as already known. Using the feature detector and descriptor pro-

vided by the SURF algorithm, proves to be sufficient for unambiguous landmarks 

matching. 
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Fig. 9. Number of registered unique landmarks in time. 

 

The assessment of map building process was performed by examining the align-

ment of camera image fragments extracted together with landmarks in consecutive 

observations. Fig. 12 shows such image fragments arranged in accordance with the 

UAV position. No noticeable mismatches of the fragments can be seen. This con-

firms that they were adequately aligned in the figure representing the map and 

proves that coordinates transformations throughout different reference frames as 

well as landmarks associations were performed properly by the SLAM algorithm. 

 

 
Fig. 10. Consecutive steps of map building with camera field of view. 



SIMULATION AND ANALYSIS OF PARTICLE FILTER BASED SLAM SYSTEM 

25/2018 149 

Overall performance of the simulator was evaluated by analysing the trajectories 

of particles relatively to the UAV path. Fig. 13 presents the map constructed by the 

robot as it moves along its trajectory (black line) together with the particles trajecto-

ries (white lines). From the beginning of simulation, the particles drift increases 

gradually. This results from an intrinsic property of a strapdown inertial navigation 

system which integrates measurements of accelerometers and gyros, leading also to 

an integration of errors. However, if a particle current location differs significantly 

from the true UAV position, observation errors appear. Consequently, the particle 

weight decreases, making it much less probable for the particle to survive the 

resampling process. This way the algorithm ensures that its particles remain in the 

vicinity of the robot’s true trajectory. As can be seen in Fig. 13, the SLAM algo-

rithm correctly estimates the UAV path. 

 

 
Fig. 11. UAV's true trajectory (black) and particles' estimation of it (white). 

 

Further, an analysis of the algorithm’s behavior when the UAV returns to a pre-

viously visited area was performed. Then, the SLAM algorithm should recognize 

already registered landmarks causing the accuracy of estimation to improve. This 

phenomenon is addressed as closing the loop in the SLAM terminology. Fig. 14 

shows an example of the loop closing. Before visiting an already known area (Fig. 

14a) the particles are shifted from the true UAV trajectory and distributed relatively 

wide. After the UAV reaches a previously visited region (Fig. 14b) the shift and 
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spread of the particles significantly decrease, indicating an improvement of the par-

ticle filter accuracy. This results from the fact, that in the previously visited area, 

samples are weighted not only relatively to few landmarks from several recent 

frames, but also relatively to the landmarks extracted during previous visits. 

 

 
Fig. 12. Visiting known area and loop closing. 

5. CONCLUSIONS 

In the paper, a SLAM algorithm based on a Rao-Blackwellized particle filter and 

processing images from a monocular camera, dedicated for use in UAVs, was pre-

sented. The algorithm was implemented in MATLAB computing environment and 

thoroughly tested with a simulator developed by the authors. The simulator made it 

possible to examine key features of the proposed SLAM algorithm, including the 

particle filter performance, the effectiveness of SURF features extraction and match-

ing as well as its ability to build a map of the terrain during UAV flight. The behav-

iour of our SLAM algorithm proved to be correct at all its stages of operation which 

is a claim supported by the simulation results included in the paper. 

While the developed simulator is a flexible and useful tool, there is still a space 

for its upgrade. Some of the features which are planned to be included by the authors 

are: 

 improving motion and observation models to allow for a six degrees of 

freedom analyses; 

 expanding the simulator to a multi-robot SLAM capability; 

 adding a possibility of importing and processing data acquired by a real 

UAV. 



SIMULATION AND ANALYSIS OF PARTICLE FILTER BASED SLAM SYSTEM 

25/2018 151 

The developed simulator gives a possibility of gaining experience needed to de-

sign a fully operational outdoor SLAM system for large-scale experiments. Howev-

er, the proposed approach can be fully validated only using data acquired by real 

sensors installed onboard UAV. The authors currently develop a SLAM capable 

UAV demonstrator and plan to verify the presented simulation results using real 

registered IMU data and camera images. 

REFERENCES 

[1] Bailey T., Durrant-Whyte H.: Simultaneous localization and mapping 

(SLAM): part II. IEEE Robotics & Automation Magazine, Vol. 13, Issue 3, 

2006, pp. 108-117. 

[2] Baya H., Essa A., Tuytelaarsb T., Van Goolab L. (2008), Speeded-Up Robust 

Features (SURF). Computer Vision and Image Understanding, Vol. 110, Issue 

3, 2008, pp. 346-359. 

[3] Cadena C., Carlone L., Carrillo H., Latif Y., Scaramuzza D., Neira J., Reid I., 

Leonard J.: Past, Present, and Future of Simultaneous Localization and Map-

ping: Towards the Robust-Perception Age. IEEE Transactions on Robotics, 

Vol. 32, issue 6, 2016. 

[4] Durrant-Whyte H., Leonard J., Cox J.I.: Dynamic map building for autono-

mous mobile robot. Intelligent Robots and Systems '90, 1990. 

[5] Endres F., Hess J., Sturm J., Cremers D., Burgard W.: 3D Mapping with an 

RGB-D Camera. IEEE Transactions on robotics Vol. 30, issue 1, 2010, pp. 

177-187. 

[6] Grisetti G., Kummerle R., Stachniss C., Burgard W.: A Tutorial on Graph-

Based SLAM. IEEE Intelligent Transportation Systems Magazine, Vol. 2, is-

sue 4, 2010, pp. 31-43. 

[7] Grisetti G., Stachniss C., Burgard W.: Improving Grid-based SLAM with 

Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective 

Resampling. Proceedings of the 2005 IEEE International Conference on Ro-

botics and Automation Barcelona, Spain, 2005, pp. 2432-2437. 

[8] Hartmann J., Klussendorff J., Maehle E.: A comparison of feature descriptors 

for visual SLAM, European Conference on Mobile Robots 2013. 

[9] Howard A.: Multi-robot Simultaneous Localization and Mapping using Parti-

cle Filters. Proceedings of the 2005 IEEE International Conference on Robot-

ics and Automation. 



PIOTR KANIEWSKI, PAWEŁ SŁOWAK 

152 ANNUAL OF NAVIGATION 

[10] Leonard J.J., Durrant-Whyte H.F.: Directed Sonar Sensing for Mobile Robot 

Navigation. Kluwer Academic Publishers, 1992. 

[11] Łabowski M., P. Kaniewski P., P. Serafin P.: Inertial navigation system for 

radar terrain imaging. IEEE/ION Position, Location and Navigation Symposi-

um, 2016, pp.942-948. 

[12] Konatowski S., Kaniewski P., Matuszewski J.: Comparison of Estimation 

Accuracy of EKF, UKF and PF Filters. Annual of Navigation 23/2016, pp. 

69-87. 

[13] Santana A.M., Aires K., Veras R., Medeiros A.: An Approach for 2D Visual 

Occupancy Grid Map Using Monocular Vision. Electronic Notes in Theoreti-

cal Computer Science, 281, 2014, pp. 175-191. 

[14] Sola J., Marquez D., Codol J., Vidal-Calleja T.: An EKF-SLAM toolbox for 

MATLAB. 2009. 

[15] Thrun S., Burgard W., Fox D.: Probabilistic Robotics. MIT Press, 2005. 

[16] Thrun S., Montemerlo M., Koller D., Wegbreit B.: FastSLAM: An Efficient 

Solution to the Simultaneous Localization and Mapping Problem with Un-

known Data Association. Proceedings of the AAAI-02 Conference on Artifi-

cial Intelligence, 2002, pp. 593-598. 

[17] Vincent P., Rubin I.: A framework and analysis for cooperative search using 

UAV swarms. Proceedings of the 2004 ACM symposium on Applied compu-

ting, pp. 79-86. 

[18] H. Wang H., F. Guixia F., L. Juan L., Y. Zheping Y., B. Xinqian B.: An 

Adaptive UKF Based SLAM Method for Unmanned Underwater Vehicle. 

Mathematical Problems in Engineering, 2013. 

Received September 2018 

Reviewed November 2018 

Accepted December 2018 

PIOTR KANIEWSKI 
Military University of Technology 

Urbanowicza 2, 00-908 Warszawa, Poland 
e-mail: piotr.kaniewski@wat.edu.pl 

PAWEŁ SŁOWAK 
Military University of Technology 
Urbanowicza 2, 00-908 Warszawa, Poland 
e-mail: pawel.slowak@wat.edu.pl  

mailto:piotr.kaniewski@wat.edu.pl
mailto:pawel.slowak@wat.edu.pl


SIMULATION AND ANALYSIS OF PARTICLE FILTER BASED SLAM SYSTEM 

25/2018 153 

STRESZCZENIE 

W artykule przedstawiono problematykę i algorytm równoczesnego pozycjonowania i two-

rzenia mapy terenu (SLAM) przeznaczony dla bezzałogowych statków powietrznych 

(UAV). Opracowany przez autorów algorytm estymuje trajektorię lotu i tworzy mapę terenu 

znajdującego się pod UAV. Jako narzędzie estymacji położenia statku powietrznego zasto-

sowano filtr cząsteczkowy. Zaproponowany algorytm poddano badaniom symulacyjnym. W 

artykule opisano opracowany przez autorów symulator przeznaczony do badania algorytmu 

SLAM oraz zamieszczono wybrane wyniki badań, zawierające utworzone mapy terenu i 

estymowane trajektorie UAV. 


