PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anomalous Upper Devonian mercury enrichments : comparison of Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) and Atomic Absorption Spectrometry (AAS) analytical data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mercury geochemistry is emerging recently as a hot topic in chemostratigraphical and facies research, owing to the diagnostic character of Hg enrichments as a proxy of volcanic activity (crucial in the context of assumed causal links between volcanic cataclysms and mass extinctions). Thus, as a prerequisite to such far-reaching interpretations, reliable analytical determinations of Hg concentrations are necessary. In conventionally performed analyses in sedimentary geochemistry, Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) is usually applied, as an analytical standard for trace elements, including Hg. However, with a detection limit (DL) of 10 ppb, such measured values have been questioned as a conclusive geochemical indicator of Hg anomalies, and, instead, far more accurate techniques, such as Atomic Absorption Spectrometry (AAS; DL = 0.2 ppb), are requested. As a preliminary test of this view, we present comparative analysis of 91 samples from three sections encompassing the key Frasnian-Famennian and Famennian-Tournaisian boundary intervals in Morocco (Lahmida), Germany (Kahlleite) and Uzbekistan (Novchomok), for which Hg concentrations were determined by both methods in the same samples. Despite some differences, especially at low Hg concentrations, both analytical methods reveal the same 12 extraordinarily enriched samples in excess of 1 ppm (with one exception, the determination error is <20%), as well as similar overall chemostratigraphic patterns characterized by a few prominent Hg spikes, with a top value of 5.8 ppm. The Hg concentrations determined by ICP-MS and AAS are significantly correlated, as high as r = 0.98 (Novchomok), even if the first method reveals a general tendency toward slightly heightened values (by ~15 to 30% for medians). Therefore, ICP-MS results can conclusively be used in mercury chemostratigraphy in order to recognize extraordinary volcanic (or other) signals, at least in the Devonian geological record. False Hg anomalies were not generated by these conventional ICP-MS determinations.
Rocznik
Strony
487--495
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • Silesian University, Department of Earth Sciences, Będzińska 60, PL-41-200 Sosnowiec, Poland
  • Silesian University, Department of Earth Sciences, Będzińska 60, PL-41-200 Sosnowiec, Poland
  • Silesian University, Department of Earth Sciences, Będzińska 60, PL-41-200 Sosnowiec, Poland
Bibliografia
  • 1. Bergquist, A.B., 2017. Mercury, volcanism, and mass extinctions. Proceedings of the National Academy of Sciences of the United States of America, 114: 8675-8677.
  • 2. Bond, D.P.G., Grasby, S.E., 2017. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 478: 3-29.
  • 3. Calvert, S.E., Pedersen, T.F., 2007. Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. Developments in Marine Geology, 1 : 567-644.
  • 4. Dopieralska, J., 2003. Neodymium isotopic composition of conodonts as a palaeoceanographic proxy in the Variscan oceanic system. Ph.D. thesis, Justus-Liebig-University, Giessen.
  • 5. Dopieralska, J., 2009. Reconstructing seawater circulation on the Moroccan shelf of Gondwana during the Late Devonian: evidence from Nd isotope composition of conodonts. Geochemistry, Geophysics, Geosystems, 10: 1-10.
  • 6. Eckelmann, K., Nesbor, H.-D., Königshof, P., Linnemann, U., Hofmann, M., Lange, J.-M., Sagawe, A., 2014. Plate interactions of Laurussia and Gondwana during the formation of Pangaea - constraints from U-Pb LA-SF-ICP-MS detrital zircon ages of Devonian and Early Carboniferous siliciclastics of the Rhenohercynian zone, Central European Variscides. Gondwana Ressearch, 25: 1484-1500.
  • 7. Franke, W., Cocks, L.R.M., Torsvik, T.H., 2017. The Palaeozoic Variscan oceans revisited. Gondwana Research, 48: 257-284.
  • 8. Gereke, M., 2004. Das Profil Kahlleite Ost - die stratigraphische Entwicklung einer Tiefschwelle im Oberdevon des Bergaer Sattels (Thüringen). Geologica et Palaeontologica, 38: 1-31.
  • 9. Gereke, M., 2007. Die oberdevonische Kellwasser-Krise in der Beckenfazies von Rhenoherzynikum und Saxothuringikum (spätes Frasnium/frühestes Famennium, Deutschland). Kölner Forum für Geologie und Paläontologie, 17: 1-228.
  • 10. Gereke, M., Schindler, E., 2012. “Time-Specific Facies” and biological crises - the Kellwasser Event interval near the Frasnian/Famennian boundary (Late Devonian). Palaeogeography, Palaeoclimatology, Palaeoecology, 367-368: 19-29.
  • 11. Golonka, J., 2012. Paleozoic paleoenvironment and Paleolithofacies Maps of Gondwana. AGH University of Science and Technology Press.
  • 12. Golonka, J., Ross, M.I., Scotese, C.R., 1994. Phanerozoic paleogeographic and paleoclimatic modeling maps. Canadian Society of Petroleum Geologists Memoir, 17: 1-47.
  • 13. Grasby, S.E., Beauchamp, B., Bond, D.P.G., Wignall, P.B., Talavera, C., Galloway, J.M., Piepjohn, K., Reinhardt, L., Blomeier, D., 2015. Progressive environmental deterioration in NW Pangea leading to the latest Permian extinction. GSA Bulletin, 127: 1331-1347.
  • 14. Han, Y.G., Zhao, G.C., 2018 (in press). Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: constraints on the closure of the Paleo-Asian Ocean. Earth-Science Reviews, https://doi.org/10.1016/j.earscirev.2017.09.012.
  • 15. Hartenfels, S., 2011. Die globalen Annulata-Events und die Dasberg-Krise (Famennium, Oberdevon) in Europa und Nord-Afrika - hochauflösende Conodonten-Stratigraphie, Karbonat-Mikrofazies, Paläoökologie und Paläodiversität. Münstersche Forschungen zur Geologie und Paläontologie, 105: 17-527.
  • 16. Hildebrand, A.R., Boynton, W.V., 1989. Hg anomalies at the K/T boundary: evidence for acid rain? Meteoritics, 24: 277-278.
  • 17. Jones, D.S., Martini, A.M., Fike, D.A., Kaiho, K., 2017. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology, 45: 631-634.
  • 18. Ketris, M.P., Yudovich, Y.E., 2009. Estimations of Clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78: 135-148.
  • 19. Kravchinsky, V.A., 2012. Paleozoic large igneous provinces of Northern Eurasia: correlation with mass extinction events: Global and Planetary Change, 86-87: 31-36.
  • 20. Michard, A., Soulaimani, A., Hoepffner, C., Ouanaimi, H., Baidder, L., Rjimati, E.C., Saddiqi, O., 2010. The South-Western Branch of the Variscan Belt: evidence from Morocco. Tectonophysics, 492: 1-24.
  • 21. Moreno, C., Gonzalez, F., Sáez, R., Melgarejo, J.C., Suárez- Ruiz, I., 2018. The Upper Devonian Kellwasser Event recorded in a regressive sequence from inner shelf to lagoonalpond, Catalan Coastal Ranges, Spain. Sedimentology, 65: doi: 10.1111/sed. 12457.
  • 22. Narkiewicz, K., Rakociński, M., Corradini, C., Racki, G., 2017. New conodont data from the Devonian-Carboniferous boundary interval in the Kitab Reserve Area (Uzbekistan). Cuadernos del Museo Geominero, 22: 183-184.
  • 23. Nascimento-Silva, V.M., Sial, A.N., Ferreira, V.P., Neumann, V.H., Barbosa, J.A., Pimentel, M.M., Lacerda, L.D., 2011. Cretaceous-Paleogene transition at the Paraíba Basin, northeastern, Brazil: carbon-Isotope and mercury subsurface stratigraphies. Journal of South American Earth Sciences, 32: 379-392.
  • 24. Palinkaš, A.L., Drobne, K., Durn, G., Miko, S., 1996. Mercury anomaly at the Cretaceous-Tertiary boundary: Dolenja Vas, Slovenia (abstract). In: International Workshop Postojna '96. The Role of Impact Processes in the Geological and Biological Evolution of Planet Earth: 31-32.
  • 25. Percival, L.M.E., Witt, M.L.I., Mather, T.A., Hermoso, M., Jenkyns, H.C., Hesselbo, S.P., Al-Suwaidi, A.H., Storm, M.S., Xu, W., Ruhl, M., 2015. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: a link to the Karoo-Ferrar Large Igneous Province. Earth and Planetary Science Letters, 428: 267-280.
  • 26. Percival, L.M.E., Ruhla, M., Hesselbo, S.P., Jenkyns, H.C., Mather, T.A., Whiteside, J.H., 2017. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 114: 7929-7934.
  • 27. Pyle, D.M., Mather, T.A., 2003. The importance of volcanic emissions for the global atmospheric mercury cycle. Atmospheric Environment, 37: 5115-5124.
  • 28. Racki, G., Rakociński, M., Marynowski, L., Wignall, P.B., 2018. Mercury enrichments and the Frasnian-Famennian biotic crisis: a volcanic trigger proved? Geology, 46: 543-546.
  • 29. Ramkumar, M. ed., 2015. Chemostratigraphy. Concepts, Techniques, and Applications. Elsevier, Amsterdam.
  • 30. Rampino, M.R., 2017. Cataclysms. A New Geology for the Twenty-first Century. Columbia University Press, New York.
  • 31. Raumer, J.F., Nesbor, H.D., Stampfli, G.M., 2017. The north-subducting Rheic Ocean during the Devonian: consequences for the Rhenohercynian ore sites. International Journal of Earth Sciences, 106: 2279-2296.
  • 32. Riboulleau, A., Spina, A., Vecoli, M., Riquier, L., Quijada, M., Tribovillard, N., Averbuch, O., 2018. Organic matter deposition in the Ghadames Basin (Libya) during the Late Devonian: a multidisciplinary approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 497: 37-51.
  • 33. Ricci, J., Quidelleur, X., Pavlov, V., Orlov, S., Shatsillo, A., Courtillot, V., 2013. New 40Ar/39Ar and K-Ar ages of the Viluy traps (Eastern Siberia): further evidence for a relationship with the Frasnian-Famennian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 386: 531-540.
  • 34. Sabatino, N., Ferraro, S., Coccioni, R., Bonsignore, M., Del Core, M., Tancredi, V., Sprovieri, M., 2018. Mercury anomalies in upper Aptian-lower Albian sediments from the Tethys realm. Palaeogeography, Palaeoclimatology, Palaeoecology, 495: 163-170.
  • 35. Sageman, B.B., Lyons, T.W., 2003. Geochemistry of fine-grained sediments and sedimentary rocks. Treatise on Geochemistry, 7: 15-158.
  • 36. Sanei, H., Grassby, S.E., Beauchamp, B., 2012. Latest Permian mercury anomalies. Geology, 40: 63-66.
  • 37. Saupe, A., Hartenfels, S., Becker, R.T., 2016. Agglutinating foraminifers around the Annulata Events and Dasberg Crisis (Famennian, Upper Devonian) - palaeoecology and palaeodiversity. In: 87th Annual Conference of the Paläontologische Gesellschaft, Dresden, 2016: 134.
  • 38. Sial, A.N., Gaucher, C., Silva Filho, M.A., Ferreira, V.P., Pimentel, M.M., Lacerda, L.D., Silva Filho, E.V., Cezario, W., 2010. C-, Sr-isotope and Hg stratigraphies of Neoproterozoic cap carbonates of the Sergipano Belt, Northeastern Brazil. Precambrian Research, 182: 351-372.
  • 39. Sial, A.N., Chen, J., Lacerda, L.D., Frei, R., Tewari, V.C., Pandit, M.K., Gaucher, C., Ferreira, V.P., Cirillis, S., Peralta, S., Korte, C., Barbosa, J.A., Pereira, N.S., 2016. Mercury enrichments and Hg isotopes in Cretaceous-Paleogene boundary successions: links to volcanism and paleoenvironmental impacts. Cretaceous Research, 66: 60-81.
  • 40. Simancas, J.F., Tahiri, A., Azor, A., González-Lodeiro, F., Martinez Poyatos, D.J., El Hadi, H., 2005. The tectonic frame of the Variscan-Alleghanian orogen in Southern Europe and Northern Africa. Tectonophysics, 398: 181-198.
  • 41. Smit, J., Koeberl, C., Claeys, P., Montanari, A., 2016. Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction: comment. Geology, 44: e381.
  • 42. Stampfli, G.M., Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters, 196: 17-33.
  • 43. Thibodeau, A.M., Bergquist, A.B., 2017. Do mercury isotopes record the signature of massive volcanism in marine sedimentary records? Geology, 45: 95-96.
  • 44. Timmerman, M.J., 2008. Palaeozoic magmatism. In: The Geology of Central Europe: Precambrian and Palaeozoic (ed. T McCann): 665-748, 1. Geological Society, London.
  • 45. Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232: 12-32.
  • 46. Wedepohl, K.H., 1991. The composition of the upper earth's crust and the natural cycles of selected metals. Metals in natural raw materials. Natural Resources. In: Metals and their Compounds in the Environment (ed. E. Merian): 3-17. Verlag Chemie (VCH), Weinheim.
  • 47. Wendt, J., Belka, Z., 1991. Age and depositional environment of Upper Devonian (Early Frasnian to Early Famennian) black shales and limestones (Kellwasser Facies) in the Eastern Anti-Atlas, Morocco. Facies, 25: 51-90.
  • 48. Weyer, D., 2016. Review of some Frasnian ahermatypic coral localities from Germany and description of a new genus Spinaxon (Anthozoa, Rugosa, Upper Devonian). Geologica Belgica, 19: 147-163.
  • 49. Winter, J., 2015. Vulkanismus und Kellwasser-Krise - Zirkon- -Tephrostratigrafie, Identifizierung und Herkunft distaler Fallout-Aschenlagen (Oberdevon, Synklinorium von Dinant, Rheinisches Schiefergebirge, Harz). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 166: 227-251.
  • 50. Zheng, L., Sun, R., Hintelmann, H., Zhu, J., Wang, R., Sonke, J.E., 2018. Mercury stable isotope compositions in magmatic-affected coal deposits: new insights to mercury sources, migration and enrichment. Chemical Geology, 479: 86-101.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1f1f355-d841-482e-8bd7-9c9644e88ad1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.