PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Smotifs as structural local descriptors of supersecondary elements: classification, completeness and applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Protein structures are made up of periodic and aperiodic structural elements (i.e., α-helices, β-strands and loops). Despite the apparent lack of regular structure, loops have specific conformations and play a central role in the folding, dynamics, and function of proteins. In this article, we reviewed our previous works in the study of protein loops as local supersecondary structural motifs or Smotifs. We reexamined our works about the structural classification of loops (ArchDB) and its application to loop structure prediction (ArchPRED), including the assessment of the limits of knowledge-based loop structure prediction methods. We finalized this article by focusing on the modular nature of proteins and how the concept of Smotifs provides a convenient and practical approach to decompose proteins into strings of concatenated Smotifs and how can this be used in computational protein design and protein structure prediction.
Rocznik
Strony
195--212
Opis fizyczny
Bibliogr. 143 poz., rys., tab., wykr.
Twórcy
autor
  • Structural Bioinformatics Group (GRIB), Department of Experimental and Life Sciences, University Pompeu Fabra, Barcelona, Catalonia, Spain
autor
  • Albert Einstein College of Medicine, Department of Systems and Computational Biology, Bronx, NY, USA
autor
  • Structural Bioinformatics Group (GRIB), Department of Experimental and Life Sciences, University Pompeu Fabra, Barcelona, Catalonia, Spain
  • Structural Bioinformatics Group (GRIB), Department of Experimental and Life Sciences, University Pompeu Fabra, Barcelona, Catalonia, Spain
Bibliografia
  • 1. Leszczynski JF, Rose GD. Loops in globular proteins: a novel category of secondary structure. Science 1986:234:849-55.
  • 2. Krishna MM, Lin Y, Rumbley JN, Walter Englander S. Cooperative omega loops in cytochrome c: role in folding and function. J Mol Biol 2003;331:29-36.
  • 3. Collinet B, Garcia P, Minard P, Desmadril M. Role of loops in the folding and stability of yeast phosphoglycerate kinase. Eur J Biochem 2001;268:5107-18.
  • 4. Linhananta A, Zhou H, Zhou Y. The dual role of a loop with loop contact distance in folding and domain swapping. Protein Sci 2002;ll:1695-701.
  • 5. Fersht AR. Transition-state structure as unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism. Proc Natl Acad Sci 2000;15:1525-9.
  • 6. Ulfer R, Kirschner K. The importance of surface loops for stabilizing an eightfold beta alpha protein. Protein Sci 1992; 1:31-45.
  • 7. Batori V, Koide A, Koide S. Exploring the potential of the monobody scaffold: effects of loop elongation on the stability of a fibronectin type III domain. Protein Eng 2002;l5: 1015-20.
  • 8. Kumar S, Nussinov R. How do thermophilic proteins deal with heat? Cell Mol Life Sci 2001;58:1216-33.
  • 9. Zhou HX. Loops, linkage, rings, catenanes, cages, and crowders: entropy-based strategies for stabilizing proteins. Ace Chem Res 2004:37:123-30.
  • 10. Hoedemaeker FJ, van Eijsden RR, Diaz CL, de Pater BS, Kijne JW. Destabilization of pea lectin by substitution of a single amino acid in a surface loop. Plant Mol Biol 1993;22: 1039-46.
  • 11. Fetrow JS. Omega loops: nonregular secondary structure significant in protein function and stability. FASEB 1995;9: 708-17.
  • 12. Saraste M, Sibbald PR, Wittinghofer A. The P-loop - a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 1990:15:430-4.
  • 13. Chen LT, Liang WX, Chen S, Li RK, Tan JL, Xu PF, et al. Functional and molecular features of the calmodulin-interacting protein IQCG required for haematopoiesis in zebrafish. Nat Commun 2014;5:3811.
  • 14. Kawasaki H, Kretsinger RH. Calcium-binding proteins 1: EF-hands. Protein Profile 1995;2:297-490.
  • 15. Wlodawer A, Miller M, Jaskolski M, Sathyanarayana BK, Baldwin E, Weber IT, et al. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 1989:245:616-21.
  • 16. Johnson LN, Lowe ED, Noble ME, Owen DJ. The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. FEBS Lett 1998:430:1-11.
  • 17. Gunasekaran K, Ma B, Nussinov R. Triggering loops and enzyme function: identification of loops that trigger and modulate movements. J Mol Biol 2003;332:143-59.
  • 18. Zgiby S, Plater AR, Bates MA, Thomson GJ, Berry A. A functional role for a flexible loop containing Glul82 in the class II fructose-1,6-biphosphate aldolase from Escherichia coli. J Mol Biol 2002:315:131-40.
  • 19. Adams JA. Activation loop phosphorylation and catalysis in protein kinases: is there functional evidence for the autoinhibitor model? Biochemistry 2003;42:601-7.
  • 20. Johnson LN, Noble ME, Owen DJ. Active and inactive protein kinases: structural basis for regulation. Cell 1996:85:149-58
  • 21. Joseph D, Petsko GA, Karplus M. Anatomy of a conformational change: hinged "lid" motion of the triosephosphate isomerase loop. Science 1990;249:1425-8.
  • 22. Sinev MA, Sineva EV, Utah V, Haas E. Domain closure in adenylate kinase. Biochemistry 1996:35:6425-37.
  • 23. Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W. Structure of mitochondrial creatine kinase. Nature 1996:381:341-5.
  • 24. Feng W, Shi Y, Li M, Zhang M. Tandem PDZ repeats in glutamate receptor-interacting proteins have a novel mode of PDZ domain-mediated target binding. Nat Struct Biol 2003;10:972-8.
  • 25. Planas-Iglesias J, Bonet J, Garcia-GarciaJ, Marin-Lopez MA, Feliu E, Oliva B. Understanding protein-protein interactions using local structural features. J Mol Biol 2013:425:1210-24.
  • 26. Tainer JA, Thayer MM, Cunningham RP. DNA repair proteins. Curr Opin Struct Biol 1995;5:20-6.
  • 27. Kim ST, Shirai H, Nakajima N, Higo J, Nakamura H. Enhanced conformational diversity search of CDR-H3 in antibodies: role of the first CDR-H3 residue. Proteins 1999:37:683-96.
  • 28. Bernstein LS, Ramineni S, Hague C, Cladman W, Chidiac P, Levey Al, et al. RGS2 binds directly and selectively to the Ml muscarinic acetylcholine receptor third intraceilular loop to modulate Gq/llalpha signaling. J Biol Chem 2004;279:21248-56.
  • 29. Zomot E, Kanner Bl. The interaction of the gamma-aminobutyric acid transporter GAT-1 with the neurotransmitter is selectively impaired by sulfhydryl modification of a conformationally sensitive cysteine residue engineered into extracellular loop IV. J Biol Chem 2003:278:42950-8.
  • 30. Fernandez-Fuentes N, Hermoso A, Espadaler J, Querol E, Aviles FX, Oliva B. Classification of common functional loops of kinase super-families. Proteins 2004:56:539-55.
  • 31. Espadaler J, Fernandez-Fuentes N, Hermoso A, Querol E, Aviles FX, Sternberg MJ, et al. ArchDB: automated protein loop classification as a tool for structural genomics. Nucleic Acids Res 2004;32:D185-8.
  • 32. Hermoso A, Espadaler J, Enrique Querot E, Aviles FX, Sternberg MJ, Oliva B, et al. Including functional annotations and extending the collection of structural classifications of protein loops (ArchDB). Bioinformatics Biol Insights 2009;l:77-90.
  • 33. Oliva B, Bates PA, Querol E, Aviles FX, Sternberg MJ. Automated classification of antibody complementarity determining region 3 of the heavy chain (H3) loops into canonical forms and its application to protein structure prediction. J Mol Biol 1998:279:1193.
  • 34. Oliva B, Bates PA, Querol E, Aviles FX, Sternberg MJ. An automated classification of the structure of protein loops. J Mol Biol 1997:266:814.
  • 35. Bonet J, Planas-Iglesias J, Garcia-GarciaJ, Marin-Lopez MA, Fernandez-Fuentes N, Oliva B. ArchDB 2014: structural classification of loops in proteins. Nucleic Acids Res 2014;42:D315-9.
  • 36. Fernandez-Fuentes N, Querol E, Aviles FX, Sternberg MJ, Oliva B. Prediction of the conformation and geometry of loops in globular proteins: testing ArchDB, a structural classification of loops. Proteins 2005:60:746-57.
  • 37. Fernandez-Fuentes N, Oliva B, Fiser A. A supersecondary structure library and search algorithm for modeling loops in protein structures. Nucleic Acids Res 2006:34:2085-97.
  • 38. Fernandez-Fuentes N, Fiser A. Saturating representation of loop conformational fragments in structure databanks. BMC Struct Biol 2006;6:15.
  • 39. Fernandez-Fuentes N, Dybas JM, Fiser A. Structural characteristics of novel protein folds. PLoS Comput Biol 2010;6:el000750.
  • 40. Menon V, Vallat BK, Dybas JM, Fiser A. Modeling proteins using a supersecondary structure library and NMR chemical shift information. Structure 2013:21:891-9.
  • 41. Bonet J, Segura J, Planas-lglesiasJ, Oliva B, Fernandez-Fuentes N. Frag'r'Us: knowledge-based sampling of protein backbone conformations for de novo structure-based protein design. Bioinformatics 2014:30:1935-6.
  • 42. Venkatachalam CM. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers 1968:6:1425-36.
  • 43. Richardson JS. The anatomy and taxonomy of protein structure. Adv Protein Chem 1981:34:167-339.
  • 44. Wilmot CM, Thornton J. Analysis and prediction of the different types of beta-turns in proteins. J Mol Biol 1988;203:221-32.
  • 45. Hutchinson EG, Thornton JM. A revised set of potentials for beta-turn formation in proteins. Protein Sci 1994;3:2207-l6.
  • 46. Matthews BW. The gamma turn. Evidence for a new folded conformation in proteins. Macromolecules 1972;5:818-9.
  • 47. Milner-White E, Ross BM, Ismail R, Belhadj-Mostefa K, Poet R. One type of gamma-turn, rather than the other gives rise to chain-reversal in proteins. J Mol Biol 1988:204:777-82.
  • 48. Rose GD, Gierasch LM, Smith JA. Turns in peptides and proteins. Adv Protein Chem 1985:37:1-109.
  • 49. Sibanda BL, Thornton JM. Conformation of beta hairpins in protein structures: classification and diversity in homologous structures. Methods Enzymol 1991:202:59.
  • 50. Sibanda BL, Blundell TL, Thornton JM. Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol 1989:206:759.
  • 51. Milner-White EJ, Poet R. Four classes of beta-hairpins in proteins. Biochem J 1986;240:289-92.
  • 52. Efimov AV. Structure of coiled beta-beta-hairpins and beta-beta-corners. FEBS Lett 1991;284:288-92.
  • 53. Edwards M, Sternberg MJ, Thornton J. Structural and sequence patterns in the loops of beta alpha beta units. Prot Eng 1987:1:173-81.
  • 54. Rice PA, Goldman A, Steitz TA. A helix-turn-strand structural motif common in alpha-beta proteins. Prot Struct Funct Genet 1990;8:343.
  • 55. Donate LE, Rufino SD, Canard LH, Blundell TL Conformational analysis and clustering of short and medium size loops connecting regular secondary structures: a database for modeling and prediction. Protein Sci 1996;5:2600.
  • 56. Wintjens RT, Rooman MJ, Wodak SJ. Automatic classification and analysis of alpha alpha-turn motifs in proteins. J Mot Biol 1996;255:235-53.
  • 57. Regad L, Martin J, Nuel G, Camproux AC. Mining protein loops using a structural alphabet and statistical exceptionality. BMC Bioinformatics 2010;ll:75.
  • 58. Shen Y, Picord G, Guyon F, Tuffery P. Detecting protein candidate fragments using a structural alphabet profile comparison approach. PLoS ONE 2013;8:e80493.
  • 59. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res 2000;28:235-42.
  • 60. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983;22:2577-637.
  • 61. Everitt B. Cluster analysis. Chapter 3. Heineman Educational Books Ltd., London, 1974.
  • 62. Gene Ontology Consortium. The Gene Ontology: enhancements for 2011. Nucleic Acids Res 2012;40:D559-64.
  • 63. Bairoch A. The ENZYME database in 2000. Nucleic Acids Res 2000;28:304-5.
  • 64. Hubbard TJ, Murzin AG, Brenner SE, Chothia C. SCOP: a structural classification of proteins database. Nucleic Acids Res 1997;25:236.
  • 65. Espadaler J, Querol E, Aviles FX, Oliva B. Identification of function-associated loop motifs and application to protein function prediction. Bioinformatics 2006;22:2237-43.
  • 66. Van Dongen S. Graph clustering via a discrete uncoupling process. SIAM J Matrix Anal Appl 2008:30:121-41.
  • 67. Baker D, Sali A. Protein structure prediction and structural genomics. Science 2001;294:93-6.
  • 68. Fiser A, Feig M, Brooks CL III, Sali A. Evolution and physics in comparative protein structure modeling. Ace Chem Res 2002;35:413.
  • 69. Pieper U, Eswar N, Braberg H, Madhusudhan MS, Davis FP, Stuart AC, et al. MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 2004;32:D217.
  • 70. Eiben CB, Siegel JB, Bale JB, Cooper S, Khatib F, Shen BW, et al. Increased Diels-Alderase activity through backbone remodeling guided by Foldit players. Nat Biotechnol 2012;30:190-2.
  • 71. Fernandez-Fuentes N, Fiser A. Modeling loops in protein structures. In: Introduction to protein structure prediction: methods and algorithms. Wiley Series on Bioinformatics. New Jersey: Wiley & Sons, Inc., 2010:279-299.
  • 72. Greer J. Comparative model-building of the mammalian serine proteases. J Mol Biol 1981;153:1027.
  • 73. Jones TA, Thirup S. Using known substructures in protein model building and crystallography. EMBOJ 1986;5:819.
  • 74. Sussman JL, Lin D, Jiang J, Manning NO, PriluskyJ, Ritter O, et al. Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr 1998:54:1078-84.
  • 75. Chothia C, Lesk AM. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 1987;196:901.
  • 76. Kwasigroch JM, Chomilier J, Mornon JP. A global taxonomy of loops in globular proteins. J Mol Biol 1996:259:855-72.
  • 77. Wojcik J, Mornon JP, Chomilier J. New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification. J Mol Biol 1999:255:235-53.
  • 78. Martin AC, Thornton JM. Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. J Mol Biol 1996;263:800.
  • 79. Burke DF, Deane CM, Blundell TL. Browsing the SLoop database of structurally classified loops connecting elements of protein secondary structure. Bioinformatics 2OOO;16:513.
  • 80. Michalsky E, Goede A, Preissner R. Loops in Proteins (LIP) – a comprehensive loop database for homology modelling. Protein Eng 2003:16:979.
  • 81. Heuser P, Wohlfahrt G, Schomburg D. Efficient methods for filtering and ranking fragments for the prediction of structurally variable regions in proteins. Proteins 2004:54:583-95.
  • 82. Choi Y, Deane CM. FREAD revisited: accurate loop structure prediction using a database search algorithm. Proteins 2010:78:1431-40.
  • 83. Fernandez-Fuentes N, Zhai J, Fiser A. ArchPRED: a template based loop structure prediction server. Nucleic Acids Res 2006;34:W173-6.
  • 84. Peng HP, Yang AS. Modeling protein loops with knowledge-based prediction of sequence-structure alignment. Bioinformatics 2OO7;23:2836-42.
  • 85. Ko J, Lee D, Park H, Coutsias EA, Lee J, Seok C. The FALC-Loop web server for protein loop modeling. Nucleic Acids Res 2011;39:W210-4.
  • 86. Fidelis K, Stern PS, Bacon D, Moult J. Comparison of systematic search and database methods for constructing segments of protein structure. Protein Engl 994;7:953.
  • 87. Lessel U, Schomburg D. Creation and characterization of a new, non-redundant fragment data bank. Protein Eng 1997;10:659.
  • 88. Chance MR, Fiser A, Sali A, Pieper U, Eswar N, Xu G, et al. High-throughput computational and experimental techniques in structural genomics. Genome Res 2004:14:2145.
  • 89. Khafizov K, Madrid-Aliste C, Almo SC, Fiser A. Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative. Proc Natl Acad Sci USA 2014:111:3733-8.
  • 90. Du P, Andrec M, Levy RM. Have we seen all structures corresponding to short protein fragments in the Protein Data Bank? An update. Protein Eng 2003:16:407-14.
  • 91. Mezei M. Chameleon sequences in the PDB. Protein Eng 1998:11:411.
  • 92. Kabsch W, Sander C. On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations. Proc Natl Acad Sci USA 1984:81:1075.
  • 93. Fernandez-Fuentes N, Fiser A. A modular perspective of protein structures: application to fragment based loop modeling. Methods Mol Biol 2013:932:141-58.
  • 94. Kolaskar AS, Kulkarni-Kale U. Sequence alignment approach to pick up conformationally similar protein fragments. J Mol Biol 1992:223:1053-61.
  • 95. Shortle D. Composites of local structure propensities: evidence for local encoding of long-range structure. Protein Sci 2002:11:18-26.
  • 96. Fiser A, Sali A. ModLoop: automated modeling of loops in protein structures. Bioinformatics 2003:19:2500.
  • 97. Sali A, Blundell TL Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993;234:779.
  • 98. Khare SD, Fleishman SJ. Emerging themes in the computational design of novel enzymes and protein-protein interfaces. FEBS Lett 2013:587:1147-54.
  • 99. Kiss G, Celebi-Olcum N, Moretti R, Baker D, Houk KN. Computational enzyme design. Angew Chem 2013:52:5700-25.
  • 100. Marvin JS, Hellinga HW. Conversion of a maltose receptor into a zinc biosensor by computational design. Proc Natl Acad Sci USA 2001:98:4955-60.
  • 101. Murphy PM, Bolduc JM, Gallaher JL, Stoddard BL, Baker D. Alteration of enzyme specificity by computational loop remodeling and design. Proc Natl Acad Sci USA 2009;106:9215-20.
  • 102. Hu X, Wang H, Ke H, Kuhlman B. High-resolution design of a protein loop. Proc Natl Acad Sci USA 2007;104:17668-73.
  • 103. Hocker B. Design of proteins from smaller fragments-learning from evolution. Curr Opin Struct Biol 2014;27C:56-62.
  • 104. Yadid I, Tawfik DS. Reconstruction of functional beta-propeller lectins via homo-oligomeric assembly of shorter fragments. J Mol Biol 2007:365:10-7.
  • 105. Shanmugaratnam S, Eisenbeis S, Hocker B. A highly stable protein chimera built from fragments of different folds. Protein Eng Des Sel 2012:25:699-703.
  • 106. Moult J, HubbardT, Fidelis K, Pedersen JT. Critical assessment of methods of protein structure prediction (CASP): round III. Proteins 1999;Suppl 3:2-6.
  • 107. Claren J, Malisi C, Hocker B, Sterner R. Establishing wild-type levels of catalytic activity on natural and artificial (beta alpha)8-barrel protein scaffolds. Proc Natl Acad Sci USA 2009:106:3704-9.
  • 108. Jiang L, Althoff EA, Clemente FR, Doyle L, Rothlisberger D, Zanghellini A, et al. De novo computational design of retro-aldol enzymes. Science 2008;319:1387-91.
  • 109. Wang L, Althoff EA, Bolduc J, Jiang L, Moody J, Lassila JK, et al. Structural analyses of covalent enzyme-substrate analog complexes reveal strengths and limitations of de novo enzyme design. J Mol Biol 2012;415:615-25.
  • 110. Saab-Rincon G, Olvera L, Olvera M, Rudino-Pinera E, Benites E, Soberon X, et al. Evolutionary walk between (beta/alpha)(8) barrels: catalytic migration from triosephosphate isomerase to thiamin phosphate synthase. j Mol Biol 2012;416:255-70.
  • 111. Azoitei ML, Correia BE, Ban YE, Carrico C, Kalyuzhniy O, Chen L, et al. Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 2011:334:373-6.
  • 112. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecutes. Methods Enzymol 2011;487:545-74.
  • 113. Cooper S, Khatib F, Treuille A, Barbero J, Lee J, Beenen M, et al. Predicting protein structures with a multiplayer online game. Nature 2010:466:756-60.
  • 114. Fiser A. Protein structure modeling in the proteomics era. Expert Rev Proteomics 2004;l:97-110.
  • 115. Cornilescu G, Delagtio F, BaxA. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 1999;13:289-302.
  • 116. Shen Y, Delaglio F, Cornilescu G, BaxA. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 2009:44:213-23.
  • 117. Bonneau R, Strauss CE, Rohl CA, Chivian D, Bradley P, Malmstrom L, et al. De novo prediction of three-dimensional structures for major protein families. J Mol Biol 2002;322:65-78.
  • 118. Bowers PM, Strauss CE, Baker D. De novo protein structure determination using sparse NMR data. J Biomol NMR 2000;18:311.
  • 119. Gong H, Shen Y, Rose GD. Building native protein conformation from NMR backbone chemical shifts using Monte Carlo fragment assembly. Protein Sci 2007;16:1515-21.
  • 120. Shen Y, Vernon R, Baker D, Bax A. De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 2009:43:63-78.
  • 121. Shen Y, Lange O, Delagtio F, Rossi P, Aramini JM, Liu G, et al. Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 2008;105:4685-90.
  • 122. Cavalli A, Salvatella X, Dobson CM, Vendruscolo M. Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 2007:104:9615-20.
  • 123. Robustelli P, Kohlhoff K, Cavalli A, Vendruscolo M. Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins. Structure 2010:18:923-33.
  • 124. Robustelli P, Cavalli A, Dobson CM, Vendruscolo M, Salvatella X. Folding of small proteins by Monte Carlo simulations with chemical shift restraints without the use of molecular fragment replacement or structural homology. J Phys Chem B 2009:113:7890-6.
  • 125. Kohlhoff KJ, Robustelli P, Cavalli A, Salvatella X, Vendruscolo M. Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. J Am Chem Soc 2009:131:13894-5.
  • 126. Han B, Liu YF, Ginzinger SW, Wishart DS. SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 2011:50:43-57.
  • 127. Shen Y, Bax A. SPARTA plus: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 2010:48:13-22.
  • 128. Meiler J. PROSHIFT: protein chemical shift prediction using artificial neural networks. J Biomol NMR 2003:26:25-37.
  • 129. Berjanskii M, Tang P, Liang J, Cruz JA, Zhou J, Zhou Y, et al. GeNMR: a web server for rapid NMR-based protein structure determination. Nucleic Acids Res 2009;37:W670-7.
  • 130. Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G. CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 2008;36:W496-502.
  • 131. Rykunov D, Fiser A. New statistical potential for quality assessment of protein models and a survey of energy functions. BMC Bioinformatics 2010;ll:128.
  • 132. Rykunov D, Steinberger E, Madrid-Aliste CJ, Fiser A. Improved scoring function for comparative modeling using the M4T method. J Struct Funct Genomics 2009:10:95-9.
  • 133. Rykunov D, Fiser A. Effects of amino acid composition, finite size of proteins, and sparse statistics on distance-dependent statistical pair potentials. Proteins 2007:67:559-68.
  • 134. Lazaridis T, Karplus M. Effective energy function for proteins in solution. Proteins 1999:35:133.
  • 135. Morozov AV, Kortemme T. Potential functions for hydrogen bonds in protein structure prediction and design. Adv Protein Chem 2005:72:1-38.
  • 136. Fiser A, Sali A. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 2003:374:461.
  • 137. Zemla A. LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 2003;31:3370-4.
  • 138. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et at. BioMagResBank. Nucleic Acids Res 2008;36:D402-8.
  • 139. Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, Chothia C, et al. Data growth and its impact on the SCOP dataBase: new developments. Nucleic Acids Res 2008;36:D419-25.
  • 140. Remmert M, Biegert A, Hauser A, Soding J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 2012;9:173-5.
  • 141. Altschul SF, Koonin EV. Iterated profile searches with PSI-BLAST - a tool for discovery in protein databases. Trends Biochem Sci 1998;23:444.
  • 142. Baber JL, Libutti D, Levens D, Tjandra N. High precision solution structure of the C-terminal KH domain of heterogeneous nuclear ribonucleoprotein K, a c-myc transcription factor. J Mol Biol 1999:289:949-62.
  • 143. Koga N, Tatsumi-Koga R, Liu GH, Xiao R, Acton TB, Montelione GT, et al. Principles for designing ideal protein structures. Nature 2012;491:222.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1efc261-e690-40f8-8689-afb2250ac095
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.