PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

HA-ZnO-Fe3O4 composite manufactured by wet powder metallurgy process for implant applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A hydroxyapatite (HA) based biocompatible and bioactive composite is an appropriate choice for bio-implants. This experimental work presents the influence of ZnO and Fe3O4 on the microstructure of HA-ZnO-Fe3O4 composites synthesized by the wet powder metallurgy process. These composites were characterized using SEM, energy-dispersive X-ray spectroscopy (EDS), and XRD. The obtained results showed the effect of the addition of Fe3O4 on the interface formation, which is exhibited by interconnected pores and sintered neck in the micrographs. The observed porosity helps to enhance the required osseointegration for the fixation of implants with human bones.
Rocznik
Strony
40--43
Opis fizyczny
Bibliogr.14 poz., rys.
Twórcy
autor
  • Pranveer Singh Institute of Technology, Kanpur India-209305
  • Harcourt Butler Technical University, Kanpur India-208010
  • Institute of Engineering and Technology, Dr. RML Avadh University, Ayodhya India-224001
  • Harcourt Butler Technical University, Kanpur India-208010
Bibliografia
  • [1] Qi J., Xiao J., Zhang T., Zhang Y., Xiong C., Investigation of the nano- hydroxyapatite with different surface modifications on the properties of poly(lactide-co-glycolide acid)/poly(trimethylene carbonate)/nano-hydroxyapatite composites, Col. Pol. Sci. 2021, 299, 623-635, DOI: 10.1007/s00396-020-04783-5.
  • [2] Kumar C.S., Dhanaraj K., Vimalathithan R.M., Ilaiyaraja P.,Suresh G., Hydroxyapatite for bone related applications derived from sea shell waste by simple precipitation method, J. of Asian Cer. Soc. 2020, 8, 2, 416-429, DOI: 10.1080/21870764.2020.1749373.
  • [3] Verma N., Zafar S., Talha M., Application of microwave energy for rapid fabrication of nano-hydroxyapatite reinforced polycaprolactone composite foam, Manuf. Let. 2020, 23, 9-13, DOI: 10.1016/j.mfglet.2019.11.006.
  • [4] Mushtaq A., Zhao R., Luo D., Dempsey E., Wang X., Iqbal M.Z., Kong X., Magnetic hydroxyapatite nanocomposites: the advances from synthesis to biomedical applications, Mat. Des. 2021, 197, 109269, DOI: 10.1016/j.matdes, 2020.109269.
  • [5] Rajesh R., Ravichandran Y.D., Raj N.A.N., Senthilkumar N., Development of a biodegradable composite (hydroxyapatite-citosan-coir pith) as a packing material, Polymer-Plastics Tech. Eng. 2014, 53, 11, 1105-1110, DOI: 10.1080/03602559.2014.886075.
  • [6] Bhatt A., Sakai K., Madhyastha R., Murayama M., Madhyastha H., Rath S.N., Biosynthesis and characterization of nano magnetic hydroxyapatite (nMHAp): An accelerated approach using simulated body fluid for biomedical application, Cer. Inter. 2020, 46, 17, 27866-27876, DOI: 10.1016/j.ceramint.2020.07.285.
  • [7] Torgbo S., Sukyai P., Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering, Mater. Chem. Phy. 2019, 237, 121868, DOI: 10.1016/j.matchemphys.2019.121868.
  • [8] Gupta R., Singh V.P., Determination of mechanical properties and physical characterization of HA-ZnO-Fe3O4 composites or implant applications, J. of Mater. Eng and Perf. 2021, 30, 955-963, DOI: 10.1007/s11665-020-05385-6.
  • [9] Balázsi C., Bishop A., Yang J.H.C., Balázsi K., Wéber F., Gouma P., Biopolymer-hydroxyapatite scaffolds for advanced prosthetics, Comp. Inter. 2009, 16, 2-3, 191-200, DOI: 10.1163/156855408X402902.
  • [10] Wojteczko A., Wojteczko K., Strzelecka M., Nam T., Jach K., Rosiński M., Bućko M.M., Pędzich Z., The influence of sintering technique on microstructure and properties of ZrO2/Al2O3 composite, Composites Theory and Practice 2019, 19, 4, 157-160.
  • [11] Khader A., Arinzeh T.L., Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells, Biotech. Bioeng. 2020, 117, 194-209, DOI: 10.1002/bit.27173.
  • [12] Maleki-Ghaleh H., Aghaie E., Nadernezhad A., Zargarzadeh M., Khakzad A., Shakeri M.S., Beygi Khosrowshahi Y., Siadati M.H., Influence of Fe3O4 nanoparticles in hydroxyapatite scaffolds on proliferation of primary human fibroblast cells, J. of Mater. Eng. and Perf. 2016, 25 2331-2339, DOI: 10.1007/s11665-016-2086-4.
  • [13] Kuda O., Pinchuk N., Bykov O., Tomila T., Olifan O., Golovkova M., Development and characterization of sr-containing glass-ceramic composites based on biogenic hydroxyapatite, Nanoscale Res. Lett. 2018, 13, 155, DOI: 10.1186/s11671-018-2550-1.
  • [14] Baji A., Wong S., rivatsan T.S., Njus G.O., Mathur G., Processing methodologies for polycaprolactone-hydroxyapatite composites: A review, Mat. Manu. Proc. 2006, 21, 2, 211-218, DOI: 10.1081/AMP- 200068681.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1ecc2e6-df32-4281-bb7d-54929efefbd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.