PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza parametrów rozpylania i parowania paliwa z wtryskiwacza 4-suwowego silnika okrętowego

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Analysis of parameters of fuel brake-up and evaporation from marine 4-stroke engine injector
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono wyniki modelowania rozpylania paliwa z zastosowaniem modeli Chu, FIPA i TAB oraz parowania paliwa z zastosowaniem modelu Spaldinga i Dukowicza. Warunki brzegowe i początkowe zostały określone na podstawie eksperymentu, polegającego na zapisie fotograficznym wtrysku paliwa w warunkach ciśnienia atmosferycznego. Uzyskane wyniki modelowania pozwoliły na porównanie parametrów strugi wtryskiwanego paliwa. Zastosowanie modelu rozpylania FIPA ma wpływ na uzyskanie najmniejszej średniej średnicy kropel na początku procesu wtrysku, analogicznie model Chu daje w wyniku największe średnie średnice kropel paliwa. Model Dukowicza opisuje zjawisko parowania paliwa w sposób bardziej intensywny na początku procesu wtrysku paliwa w stosunku do modelu Spaldinga. Podczas dalszego etapu wtrysku paliwa szybsze parowanie paliwa można uzyskać dzięki modelowi Spaldinga. Dobór modelu rozpylania i parowania paliwa powinien więc być zawsze poprzedzony badaniami eksperymentalnymi.
EN
The results of modelling of fuel brake-up using Chu, FIPA and TAB models and fuel evaporation using a Spalding Dukowicz model are presented. Boundary and initial conditions are taken from the experiment consisting of the photographic record of fuel injection under atmospheric pressure. The results of modelling allowed the comparison of the fuel injection. FIPA brake-up model results the smallest average diameter of fuel droplets at the start of the injection process. The Chu brake-up model corresponds to largest mean diameter of fuel droplets. Dukowicz’s model describes the phenomenon of evaporation of fuel in a more intensive at the beginning of fuel injection with respect to the Spalding model. During the next stage of the fuel injection faster evaporation of the fuel can be derived by the Spalding model. The choice of the brake-up and evaporation model of fuel should always be preceded by experimental research.
Rocznik
Tom
Strony
98--109
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Akademia Morska w Gdyni
Bibliografia
  • 1. Chu C.C., Corradini M.L., One-Dimensional Transient Fluid Model for Fuel/Coolant Interaction Analysis, Nuclear Science and Engineering, 1989, 101, p. 48–71.
  • 2. Costa M., Sorge U., Allocca L., CFD optimization for GDI spray model tuning and enhancement of engine performance, Advances in Engineering Software, 2012, 49, p. 43–53.
  • 3. Dukowicz J.K., Quasi-steady droplet change in the presence of convection, Informal Report Los Alamos Scientific Laboratory, LA7997-MS.
  • 4. Habchi C., Verhoeven D., Huynh Huu C., Lambert L. et al., Modeling Atomization and Break Up in High-Pressure Diesel Sprays, SAE Technical Paper 970881, 1997, doi:10.4271/970881.
  • 5. Heywood J.B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York 1988.
  • 6. Ismail H.M., Ng H.K., Gan S., Evaluation of non-premixed combustion and fuel spray models for in-cylinder diesel engine simulation, Applied Energy, 2012, 90, p. 271–279.
  • 7. Kilpinen P., Optimization of a simplified sub-model for NO emission prediction by CFD in large 4-stroke marine diesel engines, Fuel Processing Technology, 2010, 91, p. 218–228.
  • 8. Kowalski J., Tarełko W., NOx emission from a two-stroke ship engine. Part 1: Modeling aspect, Applied Thermal Engineering, 2009, 29, p. 2153–2159.
  • 9. Kuo K.K., Principles of combustion, Willey & Sons Inc., New Jersey 2005.
  • 10. Liu A., Mather D., Reitz R., Modeling the Effects of Drop Drag and Breakup on Fuel Sprays, SAE Technical Paper 930072, 1993, doi:10.4271/930072.
  • 11. O'Rourke P., Amsden A., The Tab Method for Numerical Calculation of Spray Droplet Breakup, SAE Technical Paper 872089, 1987, doi:10.4271/872089.
  • 12. Payri F., Benajes J., Margot X., Gil A., CFD modeling of the in-cylinder flow in direct-injection Diesel engines, Computers & Fluids, 2004, 33, p. 995–1021.
  • 13. Payri F., Olmeda P., Martín J., García A., A complete 0D thermodynamic predictive model for direct injection diesel engines, Applied Energy, 2011, 88, p. 4632–4641.
  • 14. Pilch M., Erdman C.A., Use of Break-up Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-induced Break-up of a Liquid Drop, International Journal Multiphase Flow, 1987, 13, p. 741–757.
  • 15. Poinsot T., Veynante D., Theoretical and numerical combustion, Edwards 2005.
  • 16. Reitz R.D., Rutland C.J., Development and testing of diesel engine CFD models, Progress in Energy and Combustion Science, 1995, Vol. 21(2), p. 173–196.
  • 17. Sahin Z., Durgun O., Multi-zone combustion modeling for the prediction of diesel engine cycles and engine performance parameters, Applied Thermal Engineering, 2008, 28, p. 2245–2256.
  • 18. Scappin F., Stefansson S.H., Haglind F., Andreasen A., Larsen U., Validation of a zerodimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines, Applied Thermal Engineering, 2012, 37, p. 344–352.
  • 19. Zienkiewicz O.C., Taylor R.L., Finite Element Method, Vol. 3 - Fluid Dynamics, Fifth Edition, Butterworth-Heinemann, Oxford 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1ec1dda-0aa1-4930-a675-9a21451217d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.