PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparison of objective functions of optimization-based smoothing algorithm for tetrahedral mesh improvement

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective function based on mesh quality metric has a major impact on smoothing unstructured tetrahedral meshes. The ability of seven mesh quality metrics to distinguish four kinds of poor-quality elements and their effects on the change of element shape are analyzed in detail. Then, four better mesh quality metrics are chosen to construct objective functions. In addition, the rational determination of searching direction and the optimal step size in the optimization algorithm of solving the objective function are proposed. Finally, comparisons with the other three objective functions are made according to different number of elements, iteration limit, and the desired accuracy in the improved mesh. It is found that with the increase of the number of elements, the time consumed during optimization increases, but the changes of the worst quality element are different. The number of iterations has little effect on the mesh quality and the time cost. The increasing of the desired degree of accuracy will improve the mesh quality and cost more time. Furthermore, the approach using objective function is compared with Freitag’s common approach. It is clearly shown that it performs better than the existing approach.
Rocznik
Strony
151--163
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Jiangsu University, Research Center of Fluid Machinery Engineering and Technology, Jiangsu, China
autor
  • Jiangsu University, Research Center of Fluid Machinery Engineering and Technology, Jiangsu, China
autor
  • Jiangsu University, Research Center of Fluid Machinery Engineering and Technology, Jiangsu, China
Bibliografia
  • 1. Dobrzynski C., Frey P., 2008, Anisotropic Delaunay mesh adaptation for unsteady simulations, Proceedings of the 17th International Meshing Roundtable, 177-194
  • 2. Dong L., Liu H.L., Tan M.G., Lu M.Z., Wang Y., Wang K., 2011, Quality measurement criteria and optimization algorithm of tetrahedral mesh for centrifugal pumps (in Chinese), Journal of Xi’an Jiaotong University, 45, 11, 31-36
  • 3. Edelsbrunner H., Shah N.R., 1996, Incremental topological flipping works for regular triangulations, Algorithmica, 15, 3, 223-241
  • 4. Freitag L.A., Ollivier-Gooch C., 1997, Tetrahedral mesh improvement using swapping and smoothing, International Journal for Numerical Methods in Engineering, 40, 21, 3979-4002
  • 5. Geuzaine C., Remacle J.-F., 2009, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, 79, 11, 1309-1331
  • 6. Hetmaniuk U., Knupp P., 2011, A mesh optimization algorithm to decrease the maximum interpolation error of linear triangular finite elements, Engineering with Computers, 27, 1, 3-15
  • 7. Klingner B.M., Shewchuk J.R., 2008, Aggressive tetrahedral mesh improvement, Proceedings of the 17th International Meshing Roundtable, 3-23
  • 8. Lo S.H., 1997, Optimization of tetrahedral meshes based on element shape measures, Computers and Structures, 63, 5, 951-961
  • 9. Mao Z.H., Ma L.Z., Zhao M.X., Li Z., 2006, A modified Laplacian smoothing approach with mesh saliency, Smart Graphics, 4073, 105-113
  • 10. Montenegro R., Cascón J.M., Escobar J.M., Rodr´ıguez E., Montero G., 2009, An automatic strategy for adaptive tetrahedral mesh generation, Applied Numerical Mathematics, 59, 9, 2203-2217
  • 11. Munson T., 2007, Mesh shape-quality optimization using the inverse mean-ratio metric, Mathematical Programming, 110, 3, 561-590
  • 12. Nie C.H., 2003, Study on quality measures for tetrahedral mesh (in Chinese), Chinese Journal of Computational Mechanics, 20, 5, 579-582
  • 13. Park J., Shontz S.M., 2010, Two derivative-free optimization algorithms for mesh quality improvement, Procedia Computer Science, 1, 1, 387-396
  • 14. Parthasarathy V.N., Graichen C.M., Hathaway A.F., 1994, A comparison of tetrahedron quality measures, Finite Elements in Analysis and Design, 15, 3, 255-261
  • 15. Shewchuk J.R., 2002, Delaunay refinement algorithms for triangular mesh generation, Computational Geometry, 22, 1/3, 21-74
  • 16. Si H., G¨artner K., 2011, 3D boundary recovery by constrained Delaunay tetrahedralization, International Journal for Numerical Methods in Engineering, 85, 11, 1341-1364
  • 17. Tournois J., Wormser C., Alliez P., Desbrun M., 2009, Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation, ACM Transactions on Graphics, 28, 3, 1557-1571
  • 18. Vartziotis D., Wipper J., Schwald B., 2009, The geometric element transformation metod for tetrahedral mesh smoothing, Computer Methods in Applied Mechanics and Engineering, 199, 1/4, 169-182
  • 19. Xu K., Cheng Z.Q., Wang Y.Z., Xiong Y., Zhang H., 2009, Quality encoding for tetrahedral mesh optimization, Computers and Graphics, 33, 3, 250-261
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1ec1d8f-373c-4184-b3ef-c81bd1d1d21e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.