PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Austempering Temperature on the Microstructure and Retained Austenite of Cast Bainitic Steel Used for Frogs in Railway Crossovers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work deals with the effect of austempering temperature and time on the microstructure and content of retained austenite of a selected cast steel assigned as a material used for frogs in railway crossovers. Bainitic cast steel was austempered at 400°C, 450°C and 500°C for two selected times (0.5 h, 4.0 h) to study the evolution of the microstructure and retained austenite content. The microstructure was characterized by optical microscopy, X-ray diffraction analyses (XRD), and hardness tests. Phase transformations during and after austempering were determined by dilatometric methods.The increase in isothermal temperature causes an increase in time to start of bainitic transformation from 0.25 to 1.5 s. However, another increase in temperature to 500°C shifts the incubation time to as much as 11 s. The time after which the transformations have ended at individual temperatures is similar and equal to about 300 s (6 min.). The dilatation effects are directly related to the amount of bainite formation. Based on these we can conclude that the temperature effect in the case of cast steel is inversely proportional to the amount of bainite formed. The largest effect can be distinguished in the case of the sample austempered at 400°C and the smallest at 500°C. Summarizing the dilatometric results, we can conclude that an increase in austempering temperature causes an increase in austenite stability. In other words, the chemical composition lowers (shifts to lower temperatures) the range of bainite transformation. It is possible that at higher austempering temperatures we will receive only stable austenite without any transformation. This is indicated by the hatched area in Figure 4b. This means that the heat treatment of cast steel into bainite is limited on both sides by martensitic transformation and the range of stable austenite. The paper attempts to estimate the content of retained austenite with X-ray diffraction.
Twórcy
autor
  • Cracow University of Technology, Faculty of Materials Engineering and Physics, 24 Warszawska Str., 31-155 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Nafto Sp. z o.o. 30 Igołomska Str., 31-983 Kraków, Poland
Bibliografia
  • [1] A. Ziewiec, E. Tasak, K. Ziewiec, K. Formowicz, Arch. Metall. Mater. 59 (2014).
  • [2] P. Havlíček, K. Bušová, Experience with explosive hardening of railway frogs from hadfield steel, Met. 2012 - Conf. Proceedings, 21st Int. Conf. Metall. Mater. (2012).
  • [3] H. Yoshitake, Y. Makino, K. Sugino, H. Kageyama, T. Suzuki, K. Fukuda, T. Miyata, Manufacture and properties of deep head hardened rail, Transp. Res. Rec. (1988).
  • [4] M. Cieśla, J. Herian, G. Junak, Key Eng. Mater. 598 (2014).
  • [5] J. Herian, K. Aniołek, M. Cieśla, G. Skotnicki, Mater. Sci. Eng. A. 608 (2014).
  • [6] E. Tasak, L. Tuz, A. Ziewiec, Arch. Foundry Eng. 14, 115-120 (2014).
  • [7] P. Havlicek, P. Nesvadba, Application of Explosive Hardening on Railway Infrastructure Parts, Met. 2011 Conf. Proc. (2011).
  • [8] S. Parzych, J. Krawczyk, Arch. Metall. Mater. 57 (2012).
  • [9] H. K. D. H. Bhadeshia, High performance bainitic steels, Mater. Sci. Forum, 500-501 (2005).
  • [10] C. Garcia-Mateo, T. Sourmail, F. G. Caballero, C. Capdevila, C. G. De Andrés, Solid-Solid Phase Transform. Inorg. Mater. 2(2005).
  • [11] S. Parzych, Arch. Metall. Mater. 62 (2017).
  • [12] M. R. Green, W. M. Rainforth, M. F. Frolish, J. H. Beynon, Wear 263 (2007).
  • [13] S. Parzych, E. Tasak, Archives od Foundry Engineering, 10 (2010).
  • [14] H. A. Aglan, Z. Y. Liu, M. F. Hassan, M. Fateh, J. Mater. Process. Technol. 151 (2004).
  • [15] H. A. Aglan, S. Ahmed, K. R. Prayakarao, M. Fateh, Engineering 05 (2013).
  • [16] S. M. Hasan, D. Chakrabarti, S. B. Singh , Wear 408-409 (2018).
  • [17] J. Herian, K. Aniołek, Reading. 31 (2008).
  • [18] K. M. Lee, A. A. Polycarpou, Wear 259 (2005).
  • [19] T. Kimura, M. Takemasa, M. Honjo, JFE Tech. Rep. 16 (2011).
  • [20] M. Hotzman, I. Dlouhy, J. Zboril, Hutnicke Listy, 58 (2003).
  • [21] D. Mandal, M. Ghosh, J. Pal, P. K. De, S. Ghosh Chowdhury, S. K. Das, G. Das, S. Ghosh, J. Mater. Sci. 44 (2009).
  • [22] Z. Ławrynowicz, S. Dymski, Adv. Mater. Sci. 8 (2008).
  • [23] I. Gutierrez, J. Aranzabal, F. Castro, J. J. Urcola, Metall. Mater. Trans. A. 26 (1995).
  • [24] J. Aranzabal, I. Gutierrez, J. M. Rodriguez-Ibabe, J. J. Urcola, Metall. Mater. Trans. A. 28 (1997).
  • [25] Q. Luo, M. Kitchen, S. Abubakri, Metals (Basel). 7 (2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1ebbb84-8353-4646-bc4e-85165e2f620d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.