
DOI 10.2478/ama-2024-0004              acta mechanica et automatica, vol.18 no.1 (2024) 

29 

AN ADAPTIVE PID CONTROL SYSTEM FOR THE ATTITUDE  
AND ALTITUDE CONTROL OF A QUADCOPTER 

Leszek CEDRO* , Krzysztof WIECZORKOWSKI* , Adam SZCZEŚNIAK*   

*Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology,  
Aleja Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland 

lcedro@tu.kielce.pl, KWieczorkowski@interia.pl, a.szczesniak@tu.kielce.pl 

received 25 May 2023, revised 6 September 2023, accepted 12 September 2023 

Abstract: In adaptive model-based control systems, determining the appropriate controller gain is a complex and time-consuming task due 
to noise and external disturbances. Changes in the controller parameters were assumed to be dependent on the quadcopter mass, which 
was the process variable. A nonlinear model of the plant was used to identify the mass, employing the weighted recursive least squares 
(WRLS) method for online identification. The identification and control processes involved filtration using differential filters, which provided 
appropriate derivatives of signals. Proportional integral derivative (PID) controller tuning was performed using the Gauss–Newton optimisa-
tion procedure on the plant. Differential filters played a crucial role in all the developed control systems by significantly reducing measure-
ment noise. The results showed that the performance of classical PID controllers can be improved by using differential filters and gain 
scheduling. The control and identification algorithms were implemented in an National Instruments (NI) myRIO-1900 controller.  
The nonlinear model of the plant was built based on Newton’s equations. 
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1. INTRODUCTION 

The quadrotor has many benefits, such as being highly ma-
noeuvrable, having a small size and simple structure and being 
able to take off and land vertically. It can also fly at low speeds 
and stay stationary in the air [1]. However, with six degrees of 
freedom and only controlled by four inputs, it brings complexity to 
its position and attitude control [2–4]. 

A good position and attitude controller are crucial to designing 
and controlling such a complex system. In control, extensive 
research has been undertaken for linear and nonlinear control 
techniques applied to the system. Among them, we find propor-
tional integral derivative (PID) [5–7], linear quadratic regulator 
(LQR) [8, 9], backstepping control (BC) [10] and sliding mode 
control (SMC) [11–14]. Controllers (other than PID) are described, 
for example, in a study mentioned in Ref. [15] (a neural network-
based controller). The PID controller is the most commonly used 
control technique and successfully implemented in the existing 
system. The PID controller’s popularity is due to its simple struc-
ture, being easy to design and being easy to tune with satisfactory 
practical implementation performance [16]. 

In a study mentioned in Ref. [17], the PID controller with an 
extended Kalman filter was used to control and stabilise the quad-
rotor’s altitude and attitude angle. The extended Kalman filter was 
used to filter out the sensor and system noises to stabilise the 
quadrotor's altitude (3.8 [s]) and attitude angle (5.8 [s]). 

A comparative study between PID, proportional derivative 
(PD) and SMC controllers was conducted [13]. The simulation 
result showed that the SMC controller has a faster stabilisation 
time of approximately <3 [s] than PD and PID controllers. None-
theless, it produces a large pitch and roll angle, making it unfa-
vourable in the real-world condition. 

In a study mentioned in Ref. [18], a nonlinear PID-type con-
troller was presented to guarantee the motion control of the quad-
rotor. The existence of gains was proven by using a Lyapunov-like 
analysis [19–21], where the quadrotor system's nonlinear dynam-
ics were considered. The authors concluded that the nonlinear 
PID-type controller they proposed could give better performance 
than conventional PID and sliding mode controllers since it can 
provide better tracking accuracy. 

A minimal amount of research presents actual experimental 
results – most of them are simulations only. Outstanding results of 
aggressive trajectory tracking by a quadcopter have been de-
scribed in the study mentioned in Ref. [22]. The authors pro-posed 
a multi-layer control structure: a combination of PD controllers, 
incremental nonlinear dynamic inversion (INDI) controllers and 
exploitation of the differential flatness of the quadcopter dynamics. 
The complete control system tracked the position and yaw angle 
and their derivatives of up to fourth order, specifically velocity, 
acceleration, yaw rate and yaw acceleration. 

National Instruments (NI) company products, especially their 
embedded myRIO-1900 devices, are exceptionally well-suited for 
handling advanced processing tasks needed in complex and 
demanding applications, including the practical deployment of 
various flight control systems for unmanned aerial vehicles 
(UAVs) [23]. With its well-designed architecture and robust 
onboard features such as a three-axis accelerometer, analogue 
IO extensions and a Wi-Fi module, the myRIO-1900 platform 
represents a highly promising embedded solution for the real-
world implementation of diverse and intricate flight control sys-
tems. Additionally, the associated LabVIEW Real-Time (RT) soft-
ware tool capitalises on deterministic execution and ensures the 
highest level of reliability. 
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The implementation of the developed adaptive procedure was 
made possible, thanks to the dual-core processor, which, in RT, 
handled the variable mass identification procedure on one core 
and the control procedure on the other. 

Adaptive controllers are control systems that can adjust their 
parameters or structure based on changes in the system or envi-
ronment. The primary goal of adaptive controllers is to maintain 
system performance and stability under varying operating condi-
tions, such as changes in load, disturbances or system parame-
ters. Adaptive controllers can be divided into two groups: control-
lers with gain scheduling, where parameters are scheduled using 
predefined look-up tables, and self-tuning controllers, where 
parameters are continuously estimated and updated online. 

An adaptive control system based on a model is a type of con-
trol system that uses a mathematical model of the system being 
controlled to adjust its parameters in RT. The mathematical model 
is usually a simplified representation of the plant, which allows for 
a better understanding of the system’s behaviour and can be used 
to predict how it will respond to changes in the control inputs. 

Adaptive control systems have been successfully applied in a 
wide range of appli-cations, including robotics, aerospace and 
manufacturing. However, developing an accurate model of the 
system can be challenging, and the system's performance may be 
limited by the accuracy of the model. 

Gain scheduling refers to a system where the controller pa-
rameters depend on the measured operating conditions. Gain 
scheduling is effective for systems whose dynamics changes with 
changing operating conditions. Gain scheduling involves modify-
ing the gains of P, I and D terms according to the state of the 
system. This method works best for systems whose changes in 
dynamics can be predicted so that the predetermined gains can 
be calculated and applied. Thus, it is possible to define multiple 
sets of PID parameters for gain scheduling. 

Adaptive control is commonly used to control plants where 
considerable changes in the operating conditions occur. The 
variations may be due to disturbances or changes in the plant 
parameters. One of the ways to handle this problem is to apply 
continuous adjustment of the control parameters according to the 
plant parameters. The variable parameter can be measured or 
assessed by identification [24]. In the case of a quadcopter, the 
variable parameter is its total mass. The mass of a plant may 
change when it is used for transport purposes; it will increase 
when it carries a payload. The mass is an important factor affect-
ing the optimal setpoints of the quadcopter controllers. The control 
process can be largely improved by employing controllers with 
gain scheduling. The mass, used as a process variable, can be 
assessed through online identification; there is no need to employ 
additional sensors. This approach is easy to implement for any 
plant, and it is not necessary to change its design. 

This study analyses the dynamics of a UAV with four rotors 
[25], where adaptive controllers are PID controllers with gain 
scheduling. The identification of the process variable, i.e. drone 
mass, involved nonlinear parametrisation and differential filtration 
to obtain appropriate signals and their derivatives. 

In this publication, the authors have addressed several key 
topics: 

They developed a method for tuning PID controller parame-
ters specifically tailored for a quadcopter. 

They conducted experimental trials to carefully select the pa-
rameters of differential filters. This step is crucial to ensure the 
stable operation of the control system and ac-curate identification 
of the quadcopter’s mass. 

The authors also proposed an innovative on-line identification 
method for determining the quadcopter’s mass using differential 
filters. This method allows for RT mass estimation during flight. 

Furthermore, they developed a control system that incorpo-
rates gain scheduling, and this system utilises the insights gained 
from the implementation of differential filters. The gain scheduling 
aspect ensures that the controller adapts to varying conditions. 

Studies in this area have investigated the effectiveness of var-
ious control methods, such as LQRs [26, 27], sliding mode con-
trollers [28, 29] and fuzzy logic controllers [30, 31]. The most 
commonly used type of controllers is PID controllers. Although 
they are common in quadcopters [32–34], it is still problematic to 
choose appropriate PID settings. One way to deal with this prob-
lem is to optimise the control criteria, e.g. error integral. In this 
study, the desired setpoints of PID controllers were selected by 
optimising the integral criterion. All the experiments were carried 
out for a quadcopter mounted on a test rig, which had four de-
grees of freedom. The control system was composed of four PID 
controllers responsible for altitude, roll, pitch and yaw. The control 
system was built using an NI myRIO-1900 controller and Lab-
VIEW software [35]. 

2. MATHEMATICAL MODEL OF THE QUADCOPTER 
DYNAMICS 

During mathematical modelling (Fig. 1), physical parameters 
are described in three different systems, i.e. the Earth system 
(EF), robot system (local BF) and auxiliary system (SF). The 
relationship between the EF, BF and SF is shown in Fig. 1b. In the 
notation of the mathematical model, all physical quantities, except 
Euler angles, are expressed in the local coordinate system BF. 
Euler angles are the angles between the system of BF and SF (or 
EF). 

The mathematical model was derived using Newton’s 
equations of motion. The quadcopter (Fig. 1a) is assumed to have 
six degrees of freedom. 

The drone's altitude and attitude q coordinates, represented 
by the vector (1), consist of six parameters. The first three 
parameters determine the drone's position in space, while the 
other three determine its orientation or rotations: 

q = [𝑥 𝑦 𝑧 φ θ ψ]𝑇                                        (1) 

where x, y, z are position coordinates and φ, θ, ψ are roll, pitch 
and yaw about the respective coordinate axes. 

The first step is to theoretically determine the angular velocity 
in the local coordinate system, in the same way as that described 
in a previous study mentioned in Ref. [36]: 

Ω = [

ω𝑥

ω𝑦

ω𝑧

] = [
φ̇
0
0

] + R𝑥 [
0
θ̇
0
] + R𝑥R𝑦 [

0
0
ψ̇

]                        (2) 

where Rx is the rotation matrix for a rotation by the angle φabout 

the x axis, Ry is the rotation matrix for a rotation by the angle θ 
about the y axis, Rz is the rotation matrix for a rotation by the 
angle ψ about the z axis and ω𝑥 ,ω𝑦,ω𝑧are angular velocities in 

the local coordinate system, which can be written in the following 
matrix form:  

Ω = P1 Θ̇                                                                       (3) 
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where 

P1  = [

1 0 −sinθ
0 cosφ sinφcosθ
0 −sinφ cosφcosθ

] , Θ̇ = [

φ̇

θ̇
ψ̇

]                        (4) 

 
(a) 

 
(b) 

Fig. 1. Quadcopter (a) and modelling systems (b) 

The next step is to calculate the inverse of the matrix P1  

P2  = (P1)
−1 = [

1 sinφ tanθ cosφ tanθ
0 cosφ −sinφ
0 sinφsecθ cosφsecθ

]        (5) 

Finally, knowing the matrix P2, which is dependent on the 
angular velocity of the auxiliary coordinate system, we can define 
the Euler rates as follows: 

Θ̇ = P2Ω                                                                        (6) 

The next step is to define the linear acceleration using New-
ton’s second law of motion. The general form equation for linear 
acceleration can be expressed using vectors: 

𝑚a = F − F𝑔 − F𝐶𝑜 − F𝐶𝑤                                        (7) 

where m is the quadcopter mass, a is the linear acceleration 
matrix, F is the sum of thrusts produced by all the motors, Fg is 
the gravitational force, FCo are Coriolis forces resulting from the 
quadcopter rotations and FCw are Coriolis forces resulting from the 
rotors rotations. 

As can be seen from Eq. (7), the constraint is the force 
decreased by the gravitational force and the Coriolis forces. The 
gravitational force Eq. (8) can be defined as a force projected from 
the local coordinate system to the auxiliary system. The 
gravitational acceleration g is thus multiplied by the total mass of 

the quadcopter and the rotation matrixP2: 

F𝑔 = P2 𝑚 [
0
0
𝑔
] = [

−𝑚𝑔sinθ 
𝑚𝑔sinφcosθ 
𝑚𝑔cosφcosθ 

]                                        (8) 

The first of the Coriolis forces results from the rotation of the 
entire quadcopter: 

F𝐶𝑜 = 2𝑚  Ω × v = 2𝑚 [

𝑣𝑧ω𝑦 − 𝑣𝑦ω𝑧

𝑣𝑥ω𝑧 − 𝑣𝑧ω𝑥

𝑣𝑦ω𝑥 − 𝑣𝑥ω𝑦

]                      (9) 

where vis the linear velocity matrix and 𝑣𝑥 , 𝑣𝑦,𝑣𝑧 are linear 

velocities in the local coordinate system. 
The second of the Coriolis forces results from the rotations of 

the rotors: 

F𝐶𝑤 = 2𝑚𝑤Ω𝑤 × v = 2𝑚𝑤 [
−𝑣𝑦(ω1 + ω2 + ω3 + ω4)

𝑣𝑥(ω1 + ω2 + ω3 + ω4)
0

] 

                                                                            (10) 

where the sum of rotors angular velocity matrix Ωw can be 
expressed as follows: 

Ω𝑤 = [
0
0
ω1 + ω2 + ω3 + ω4

]                                  (11) 

Where ω𝑖 is the angular velocity of the i-th motor. 
The lift F, being the sum of thrusts produced by all the motors, 

is generated vertically upwards along the drone’s vertical axis Z; it 
is described by the following formula (12): 

F = [
0
0
𝐹𝑧

] = [
0
0
𝑇1 + 𝑇2 + 𝑇3 + 𝑇4

]                                  (12) 

where F is the vector of sum of thrust of all motors and 𝑇𝑖  is the 
thrust force of the i-th motor. 

The next step is to calculate angular acceleration. This effect 
can be described mathematically using Euler’s equation of rigid-
body motion. The general vector form of Euler’s equation can be 
written as follows: 

τ =
𝑑L

𝑑𝑡
+ Ω × L                                                               (13) 

where L is the angular momentum and τ is the thrust moment. 
It is also true that for a rigid body, 

L = I Ω                                                                             (14) 

where I is described by the following matrix: 

I = [

𝐽𝑥 0 0
0 𝐽𝑦 0

0 0 𝐽𝑧

]                                                  (15) 

where Jx, Jy, Jz are moments of inertia about the respective coor-

dinate axes. 
The inertia matrix I for the quadcopter can be diagonalised in 

a matrix transform due to the symmetry of the quadcopter's ge-
ometry. Therefore, the inertia matrix I is assumed to be expressed 
in Eq. (15) during the derivation. 

Thus, substituting Eq. (13) into Eq. (14) and assuming that the 
moment of inertia is constant, we have the following expression: 

τ = I Ω̇ + Ω × (I Ω)                                                     (16) 
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Eq. (16) needs to be adjusted because the motors and rotors 
cause the gyroscopic effect [37, 38]. This effect is described by 
the fundamental equation of the gyroscope: 

τ𝑔𝑦𝑟𝑜 = Ω × L𝑝                                                               (17) 

The angular momentum vectorL𝑝 is determined by multiplying 

the moment of inertia of the rotor (Iw) by the rotor’s angular 
velocity in the axis where the rotation occurs (Ωw): 

L𝑝 = 𝐼𝑤  Ω𝑤 = [
0
0
𝐼𝑤  (ω1 + ω2 + ω3 + ω4)

]                    (18) 

Knowing Lp and Ω, we can expand Eq. (17) as follows: 

τ𝑔𝑦𝑟𝑜 = [

ω𝑥

ω𝑦

ω𝑧

] × [
0
0
𝐼𝑤  (ω1 + ω2 + ω3 + ω4)

] =

= [
ω𝑦𝐼𝑤(ω1 + ω2 + ω3 + ω4)

−ω𝑥𝐼𝑤(ω1 + ω2 + ω3 + ω4)

0

]       

        (19) 

With the gyroscopic torque being in the vector form, Euler’s 
Eq. (13) can be upgraded and described by using the following 
formula: 

τ = IΩ̇ + Ω × (IΩ) + τ𝑔𝑦𝑟𝑜                             (20) 

In Eq. (20), the unknown quantity is the angular acceleration; 
thus, after transformations, it can be written as follows: 

Ω̇ = I−1(τ − Ω × (IΩ) − τ𝑔𝑦𝑟𝑜)                                  (21) 

For the configuration coordinates responsible for the rotations 
φ, θ and ψ, the thrust moments τ are expressed in the form of 
moments Mφ, Mθ and Mψ, Eqs. (22–24), respectively: 

𝑀φ = (−𝑇1 − 𝑇2 + 𝑇3 + 𝑇4)
𝑙

√2
                                  (22) 

𝑀θ = (−𝑇1 + 𝑇2 + 𝑇3 − 𝑇4)
𝑙

√2
                                  (23) 

𝑀ψ = ∑ 𝑀𝑖
4
𝑖=1                                                                (24) 

where l is the distance between the i-th motor and the centre of 
gravity of the drone. 

Equations (22–24) demonstrate that the ability of the 
quadcopter to be controlled is influenced by the thrust force 
generated in the z direction Fz as well as the rotational moments 
Mφ, Mθ and Mψ. The thrust of the i-th motor Ti is determined by 
calculating the square of the angular velocity of the i-th rotor and 
multiplying it by a gain correction factor b: 

𝑇𝑖 = 𝑏ω𝑖
2                                                               (25) 

The moment on the i-th motor shaft Mi can be calculated from 
the angular velocity of the i-th rotor Eq. (26): 

𝑀𝑖 = 𝑑ω𝑖
2                                                    (26) 

where b, d are correction factors. 
The axes of the body coordinate system do not coincide with 

the quadcopter rotor arms and are rotated by the 
π

4
 angle around 

the body 𝑧 axis (Fig. 1). After substituting Eqs (25) and (26) into 
Eqs (22–24) and multiplying them by the rotation matrix for 

the
π

4
angle, we obtain 

τ = [

𝑀φ

𝑀θ

𝑀ψ

] =

[
 
 
 
 
𝑙𝑏(−ω1

2−ω2
2+ω3

2+ω4
2)

√2

𝑙𝑏(−ω1
2+ω2

2+ω3
2−ω4

2)

√2

𝑑(ω1
2 − ω2

2 + ω3
2 − ω4

2)]
 
 
 
 

                    (27) 

Knowing the other terms and forces, we can write the model 
of the quadcopter in the following way. The first part of the model 
refers to linear acceleration, which is defined in the local 
coordinate system: 

a = [
𝑥̈
𝑦̈
𝑧̈

] = [

0
0
𝑏

𝑚
(ω1

2 + ω2
2 + ω3

2 + ω4
2)

] − [

−𝑔sinθ 
𝑔sinφcosθ 
𝑔cosφcosθ 

] +

−2 [

𝑣𝑧ω𝑦 − 𝑣𝑦ω𝑧

𝑣𝑥ω𝑧 − 𝑣𝑧ω𝑥

𝑣𝑦ω𝑥 − 𝑣𝑥ω𝑦

] − 2
𝑚𝑤

𝑚
[
−𝑣𝑦(ω1 + ω2 + ω3 + ω4)

𝑣𝑥(ω1 + ω2 + ω3 + ω4)

0

]

 

                                                                                    (28) 

where mw is the mass of propellers and rotors. 
The second part represents Euler rates, which will be used to 

determine changes in the orientation of the quadcopter local 
system in relation to that of the auxiliary system: 

Θ̇ = [

φ̇

θ̇
ψ̇

] = [

ω𝑥 + ω𝑦sinφ tanθ + ω𝑧cosφ tanθ

ω𝑦cosφ − ω𝑧sinφ

ω𝑦sinφsecθ + ω𝑧cosφsecθ
]      (29) 

The last part is directly related to angular accelerations: 

Ω̇ = [

ω̇𝑥

ω̇𝑦

ω̇𝑧

] =

[
 
 
 
 

𝑙𝑏

𝐽𝑥√2
(−ω1

2 − ω2
2 + ω3

2 + ω4
2)

𝑙𝑏

𝐽𝑦√2
(−ω1

2 + ω2
2 + ω3

2 − ω4
2)

𝑑

𝐽𝑥
(ω1

2 − ω2
2 + ω3

2 − ω4
2) ]

 
 
 
 

+

−

[
 
 
 
 

1

𝐽𝑥
(ω𝑦ω𝑧(𝐽𝑧 − 𝐽𝑦))

1

𝐽𝑦
(ω𝑥ω𝑧(𝐽𝑥 − 𝐽𝑧))

1

𝐽𝑧
(ω𝑥ω𝑦(𝐽𝑦 − 𝐽𝑥))]

 
 
 
 

+

−

[
 
 
 

1

𝐽𝑥
(ω𝑦𝐼𝑤(ω1 + ω2 + ω3 + ω4))

1

𝐽𝑦
(−ω𝑥𝐼𝑤(ω1 + ω2 + ω3 + ω4))

0 ]
 
 
 

 

      (30) 

The relationships between the angular velocitiesωiof the mo-

tors and the respective control signals Ui are given as follows: 

[

𝑈1

𝑈2

𝑈3

𝑈4

] =

[
 
 
 
 
𝑏 𝑏 𝑏 𝑏

−
𝑏𝑙

√2
0

𝑏𝑙

√2
0

0
𝑏𝑙

√2
0 −

𝑏𝑙

√2

𝑑 −𝑑 𝑑 −𝑑 ]
 
 
 
 

  

[
 
 
 
 
ω1

2

ω2
2

ω3
2

ω4
2]
 
 
 
 

                    (31) 

𝐔 = [𝑈1 𝑈2 𝑈3 𝑈4]
𝑇 

3. IDENTIFICATION METHOD 

One of the most popular and effective methods of identifica-
tion is the least squares (LS) method, which is based on the pro-
cessing of input and output signals [39]. 

High-quality control under static and dynamic conditions can 
be achieved using microchip-based methods. However, these 
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require precise information on the actual values of the parameters 
of the mathematical model of the system [40–44]. 

In this study, specially developed low-pass filters and low-
pass differentiating filters were employed to filter inputs and out-
puts to obtain signals and their derivatives required in the identifi-
cation process. 

Since the proposed control method involves identifying one 
parameter, i.e. the quadcopter mass, the formulae to describe this 
case will be provided further in this article. Consider a model as 
follows: 

vk = wkp                                                                     (32) 

where p is the unknown parameter, vkand wk are scalar signals 

and k = 0, 1, . .. are successive time instants. 
The LS algorithm uses plant variables that were recorded over 

a long enough period of time interval k = 0, 1, . . . , N − 1. 
This approach is known as the recursive LS algorithm with 

exponential forgetting or the weighted recursive least squares 
(WRLS) algorithm [45]. 

The WRLS algorithm minimises an objective function by ex-
ponentially forgetting older data 

𝐽𝑘(𝑝) = ∑ λ𝑘−𝑖(𝑣𝑖 − 𝑤𝑘𝑝)2𝑘
𝑖=1                              (33) 

with respect to the parameter p, where λ is a constant satisfying 

the inequality 0 < λ < 1. Let p̂k represent a value of the param-

eter p for which dJk(p)/dp = 0. Using a simple transformation, 
we get 

𝑝̂𝑘 = 𝑝̂𝑘−1 + γ𝑘𝑤𝑘(𝑣𝑘 − 𝑤𝑘
𝑇𝑝̂𝑘−1)                        (34) 

γ𝑘
−1 = λγ𝑘−1

−1 + 𝑤𝑘
2, 𝑘 = 1,2, . ..                                  (35) 

In criterion Eq. (33), the components dependent on the past 

measurement data are multiplied by the factor λk−i. This implies 

that when the estimate of p is determined, the past measurement 
data are less important than the present data. The parameter λ is 
called a forgetting factor.  

Suppose that the plant equation satisfies relationship Eq. (32) 
depending on the plant input and output [45]. 

It is assumed that parameter estimates will be updated imme-

diately after a certain number of signal samplesN. The aim is to 
derive a recursive equation for determining parameter estimates 

pm for the time instants lying in the interval α(m) = [(m − 1) ⋅
N,m ⋅ N − 1],m = 1,2, . ... 

Define the following objective function: 

𝐽𝑚(𝑝) = ∑ λ𝑚−𝑗(𝑣𝑖 − 𝑤𝑘𝑝𝑗)
𝑚
𝑗=1                                   (36) 

𝑝̂𝑚 = 𝑝̂𝑚−1 + γ𝑚 ∑      𝑤𝑖(𝑣𝑖 − 𝑤𝑖𝑝̂𝑚−1)𝑖∈α(𝑚−1)       (37) 

γ𝑚
−1 = λγ𝑚−1

−1 + ∑      𝑤𝑖
2

𝑖∈α(𝑚−1) , 𝑚 = 1,2, . ..      (38) 

Generally, it is assumed that γ0
−1 = ε for ε ranging 103 −

106. Small initial values of the scalarγ0
−1 ensure immediate con-

vergence of the estimates to the real values of the parameters at 
the beginning of the algorithm. 

4. SELECTING THE SETPOINTS FOR PID CONTROLLERS 

The usual method to adjust the parameters of a controller is 
through a trial and error method, but this process can be time-
consuming and tiresome. It is essential to tune the controller’s 
parameters properly to get optimal performance, but the traditional 
way may not always provide the best solution. 

Furthermore, the control designer can never tell which exact 
parameters are the optimal solution for the controller [46]. To 
overcome the issue of the tedious trial and error method of tuning 
controller parameters, many researchers have started using opti-
misation tools in their work to find the optimal values of the con-
troller parameters easily. 

The advantages of these optimisations are that they are inde-
pendent problem structures [47]. Different algorithms have been 
used to obtain the optimal parameters of the controllers. Among 
them, we can find the genetic algorithm (GA) [48], ant colony 
optimisation (ACO) [49], artificial bee colony (ABC) [50] and cuck-
oo search (CS) [51, 52]. 

In their research study, Imane and Mostafa investigated how 
to optimise the gain parameter of a PID controller for altitude and 
attitude angle control of a quadrotor [53]. They used two optimisa-
tion methods, RM and GA, to obtain the optimal gain parameter. 

Erkol [47] conducted a study on the optimal tuning of PID con-
trol for attitude and hover control of the quadrotor. The study used 
various optimisation techniques, including ABC, particle swarm 
optimisation (PSO), GA and the Ziegler–Nichols method. The 
findings indicate that controllers based on ABC and GA perform 
the best in terms of integral absolute error (IAE) and root mean 
square error (RMSE), while the ZN method results in the worst 
performance. 

Tuning the PID controllers responsible for the quadcopter con-
trol requires selecting their setpoints: KPi, KIi andKDi. From Eq. 
(39), it is clear that the number of parameters sought can be 
reduced from 12 to 9. Because of the drone symmetry, it can be 
assumed that the drone can be rotated by the φangle around the 

body x axis and by the θangle around the body y axis by using 
PID controllers with the same setpoints. As the quadcopter 
mounted on the test rig has a limited number of degrees of free-

dom, the q vector is defined as follows:  

q = [𝑧 φ θ ψ]𝑇. Thus, 

𝑈𝑖 = 𝐾𝑃𝑖𝑒𝑖 + 𝐾𝐼𝑖 ∫ 𝑒𝑖(τ)𝑑τ + 𝐾𝐷𝑖𝑒̇𝑖,𝑖 = 1,2,3,4      (39) 

𝑒1 = 𝑧𝑧 − 𝑧, 𝑒2 = φ𝑧 − φ, 𝑒3 = θ𝑧 − θ, 𝑒4 = ψ𝑧 − ψ   (40) 

q𝑧 = [𝑧𝑧 φ𝑧 θ𝑧 ψ𝑧]
𝑇, e = [𝑒1 𝑒2 𝑒3 𝑒4]𝑇  

where 

𝑧𝑧, φ𝑧, θ𝑧 and ψ𝑧 are setpoints. 
The choice of the best PID parameters is dependent on 

various factors, including the dynamic response of the plant, as 
well as on the control objectives determined by the operator. The 
selection task can be difficult and time-consuming when the 
controller setpoints are set manually and software is used to 
optimise the PID parameters. The methods that do not require 
creating a mathematical model include autotuning employed in 
controllers with automatic setpoint selection. However, automatic 
setpoint selection systems may not be able to handle the 
measurement noise, which in the case of a quadcopter is 
considerable. In this study, the tests of automatic tuning of PID 
setpoints for the drone were not repeatable, and the desired level 
of confidence was not reached. High levels of measurement noise 
affected the estimates of the process variable. 

Because of the nonlinearity of the plant, i.e. a quadcopter with 
multiple input and multiple output (MIMO), and high levels of 
measurement noise generated by the quadcopter, the number of 
setpoint selection methods that can be used is limited. In this 
case, setpoint selection generally involves optimising the control 
criteria (integral criteria); it does not require a mathematical 
model. 
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The diagram in Fig. 2 shows the optimisation of the setpoints 
of the PID controllers achieved by employing a minimisation 
algorithm. The Gauss–Newton algorithm [54] is used to minimise 

the target function 𝐽 = ∫
1

2
‖e‖2 𝑑τ. 

 
Fig. 2. Diagram of the optimisation of the PID controller setpoints.  

 PID,    proportional integral derivative. 

The optimisation of the setpoints was performed in LabVIEW 
for the plant shown in Fig. 3. An MPU-6050 sensor was employed 
to measure angular positions in three axes. The height z that the 
quadcopter reached was measured using a linear variable 
differential transducer (LVDT). The quadcopter is equipped with 
MT2216 II 810KV brushless motors CW CCW with 1045 
propellers. The range of the quadcopter's tested mass is 1.65-2.0 
kg, and the allowable change in altitude is within the range of 0–
0.15 m. The test setup is powered by a voltage of 12 V provided 
by two power supplies (62A each). 

 
Fig. 3. Test rig with the quadcopter 

To work correctly, the minimisation algorithm requires 
determining the initial values of setpoints and their ranges. The 
optimisation procedure performed for nine parameters can be 
much easier if the range is defined based on the simulation data 
and a priori knowledge. Ultimately, the setpoints of the PID 
controllers were estimated for three mass values, which will be the 
basis to calculate the final values of the setpoints for the mass 
identified using the adaptive algorithm (Tab. 1). 

Tab. 1. PID gains obtained using the optimisation procedure 

 

m [kg] 
PID controllers 𝑲𝑷 𝑲𝑰 𝑲𝑫 

1.65 

1 0.4200 0.01360 0.3999 

2 and 3 0.0700 0.00990 0.0200 

4 0.0300 0.00009 0.0219 

1.72 

1 0.5249 0.02835 0.4000 

2 and 3 0.0700 0.00999 0.0200 

4 0.0299 0.00099 0.0220 

1.79 

1 0.6300 0.03255 0.4000 

2 and 3 0.0700 0.01000 0.0200 

4 0.0400 0.00100 0.0200 

PID, proportional integral derivative 

To check the stability of drone control, various methods and 
tools can be used. One of the most commonly used methods is 
analysing the step or impulse response of the drone to the given 
control signals. This involves introducing a sudden change in the 
control signal and then observing how the drone reacts and how 
quickly it achieves stability. Another method is to examine the 
dynamic characteristics of the drone, such as speed, acceleration 
and rotation angles, depending on the control signals. For drones, 
an important factor for stability is height control, which can be 
checked by observing the drone's behaviour during maintaining 
constant altitude or during takeoff and landing. For more ad-
vanced drone control systems, computer simulations can also be 
used to test the system's performance in various conditions and 
scenarios. 

The proposed drone control systems in this article were tested 
for stability at different operating points. The observation of the 
drone’s dynamics and maintaining a constant altitude confirmed 
the stability of the developed control systems for the settings 
presented in Tab. 1 and the intermediate settings resulting from 
their linear interpolation. 

5. ADAPTIVE ATTITUDE AND ALTITUDE CONTROL SYSTEM 

This article presents a simpler solution using gain scheduling 
adaptive control systems. The experiments were conducted under 
laboratory conditions. 

For the analysed plant, the setpoints of the controllers were 
adjusted depending on the change in the drone mass, which is the 
process variable (Fig. 4). The setpoints of the controllers for in-
termediate mass are determined from the linear interpolation 
between the basic setpoints given in Tab. 1. 

The drone mass was estimated by identification, which in-
volved using a WRLS algorithm and derivatives of signals, ob-
tained by means of differential filtration [55]. 

 
Fig. 4. Adaptive control system PID, proportional integral derivative 
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In the diagram given in Fig. 4, the Filters block contains three 
filters that perform low-pass filtering and first- and second-order 
differentiation. The PID Controllers block includes a set of param-
eters (Tab. 1) and performs linear interpolation based on the 
leading variable m. Linear interpolation of PID controller parame-
ters is only possible within the provided set of parameters (Tab. 
1). To limit measurement noise for individual signals, low-pass 
filters are implemented in the Filter 0 blocks. The Filter 1 block 
contains a differentiating filter that simultaneously calculates 
signal derivatives and reduces measurement noise. 

The identification process uses Eq. (41), where the mass is 
estimated using the WRLS procedure: 

𝑈1 = 𝑚𝑧̈ + 𝑚𝑔cos(θ)cos(φ) + 2𝑚(ω𝑥𝑦̇ − ω𝑦𝑥̇)      (41) 

The next step involves parametrising the model Eq. (41) to 
ensure accurate identification. The parameter of the model can be 
determined as follows: 

𝑝 = 𝑚,𝑔 = 9.81                                                               (42) 

With a given parameter determined in this way, Eq. (41) takes 
the following form: 

𝑈1 = 𝑝 𝑧̈ + 𝑝 9.81cos(θ)cos(φ) + 2𝑝(ω𝑥𝑦̇ − ω𝑦𝑥̇)      (43) 

As can be seen, Eq. (43) is linear with respect to the 

parameter𝑝. Using Eq. 43, we obtain 

𝑣 = 𝑤 𝑝                (44) 

where 

𝑣 =   𝑈1, 𝑤 = 𝑧̈ + 9.81cos(θ)cos(φ) + 2(ω𝑥𝑦̇ − ω𝑦𝑥̇). 

The parameter estimates are updated every N = 129 samples 

at Δ = 0.004s. The identification process required preparing 
special derivatives of signals and eliminating most of the meas-
urement noise. The advantage of the differential filters is that they 
ensure good estimation of the derivatives of signals and also help 
reduce the measurement noise [56]. In this study, differential 
filters were used not only in the identification procedure but also to 
assess e and ė signals. The test results suggest a considerable 

improvement in the control process, where eandėsignals were 
obtained through filtration using a low-pass filter (Filter 0) and a 
differential filter (Filter 1) (Tab. 2). The use of the filters in the 
control algorithm required selecting the right parameters to ensure 
a small delay as well as good estimation of signals and their 
derivatives. The experimentally selected parameters  
of the filters used in the PID algorithm were as follows: boundary 

frequency Ωg = 0.08[rad/s] and total bandwidth of FIR filters2 ⋅

ters2 ⋅ Mf + 1 = 7. 
The procedure to identify the quadcopter mass at a sudden 

change in mass (29 [s], m + 70 g) is accurate, taking only several 
seconds (Fig. 5). 

The initial mass identification outliers resulted from the 

quadcopter lift off the ground (𝑧 = 0 [𝑚]) and high initial values 

of the matrixγ0
−1.Very good results were obtained when the 

WRLS algorithm governed by the forgetting factorλ = 0.98 was 
applied. The value of this factor has a considerable influence on 
the rate at which the procedure responds to a change in the actual 
mass. The high value of this factor is responsible for slow 
changes in the mass and high precision in the determination of its 
value, which has a beneficial effect on the control stability. The NI 
myRIO-1900 controller, with low computational capacity, was 
responsible for controlling the quadcopter and estimating its mass. 
The WRLS identification procedure was initiated every 2 Hz. This 

frequency (used to determine the mass) was optimal for the 
controller, and it allowed us to collect the right amount of data to 
ensure the stability of the WRLS procedure. As the stability of the 
mass identification procedure is essential, the signals and their 
derivatives were estimated with high precision. Thus, the filters 
used in this procedure had settings different from the filters 
employed in the PID control algorithm. The best results were 
reported for the following filter parameters: Ω𝑔 = 0.2[rad/s] 

boundary frequency and the total bandwidth of the FIR filters 

being 2 ⋅ 𝑀𝑓 + 1 = 129. 

 
Fig. 5. Identification of the quadcopter mass 

From Tab. 2, it is clear that the control output values obtained 
for PID controllers with gain scheduling (adaptive PID controllers) 
are better than those reported for PID controllers with fixed gains, 
which ensures a considerable improvement in the control quality. 

Figure 6 illustrates the control of the 𝑧 variable, for which the 
changes were the most favourable. 

The remaining responses of the quadcopter with constant and 
variable PID controllers parameters are presented in Figs. 7–9. 
Changes in individual PID controllers gains with gain scheduling 
are shown in Figs. 10–12. 

Tab. 2. Control quality IAE for the different PID control systems 

Controller 𝐈𝐀𝐄 𝒆𝟏 𝐈𝐀𝐄 𝒆𝟐 𝐈𝐀𝐄 𝒆𝟑 𝐈𝐀𝐄 𝒆𝟒 𝐈𝐀𝐄 𝐞 

Fixed gains 0.00542761 0.0244549 0.0293129 0.3711150 0.43031041 

Fixed gains 
with filtration 

0.00517794 0.0404676 0.0407506 0.2188910 0.30528714 

Gain sched-
uling 

0.00485863 0.0304711 0.0374924 0.1112040 0.18402613 

IAE, integral absolute error; PID, proportional integral derivative 

The developed control algorithm with a leading variable is 
simpler to implement than model-based adaptive methods. It is 
characterised by stability and accurate identification of the leading 
variable, which in this case is the quadcopter's mass. Based on 
the identified mass, the controller performs linear interpolation of 
the provided controller parameters from Tab. 1. Both the original 
parameters and the interpolated parameters were tested for 
stability. 

The resistance of the control algorithm to external disturb-
ances was evaluated by briefly applying an external force to the 
structure of the hovering quadcopter, thereby displacing it from its 
equilibrium position. Mass identification was solely based on the 
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dynamics equation for z  (41), resulting in a significantly simpler 
procedure than other adaptive algorithms that rely on a full model. 
Since the controller is based on stable and verified parameters 
regarding external disturbances, the control algorithm with a 
leading variable does not require additional on-line stability 
checks. This approach ensures the stability of the developed 
control system, which may not always be achievable in adaptive 
control systems based on full model identification. 

 
(a) 

 
(b) 

Fig. 6. Plant response for z: (a) PID controllers with fixed gains;  
 (b) adaptive PID controllers with gain scheduling. 
  PID, proportional integral derivative. 

 

(a) 

 
(b) 

Fig. 7. Plant response for φ: (a) PID controllers with fixed gains;  

 (b) adaptive PID controllers with gain scheduling.  
 PID, proportional integral derivative. 

 

 
(a) 

 
(b) 

Fig. 8. Plant response for θ: (a) PID controllers with fixed gains;  

 (b) adaptive PID controllers with gain scheduling.  
 PID, proportional integral derivative. 
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(a) 

 
(b) 

Fig. 9. Plant response for ψ: (a) PID controllers with fixed gains;  

 (b) adaptive PID controllers with gain scheduling.  
 PID, proportional integral derivative. 

 
Fig. 10. Gains for adaptive PID 1 controllers with gain scheduling.  

PID, proportional integral derivative. 

 
Fig. 11. Gains for adaptive PID 2 and PID 3 controllers with gain  

   scheduling. PID, proportional integral derivative 

 
Fig. 12. Gains for adaptive PID 4 controllers with gain scheduling.  

   PID, proportional integral derivative. 

6. CONCLUSIONS 

This article outlines quadcopter control experiments per-
formed under laboratory conditions. The dynamic equations of 
motion derived for the plant were used to develop an accurate 
mass identification procedure; this required implementing the 
WRLS algorithm. The tests carried out for a real physical system 
confirmed that the use of low-pass and differential filters substan-
tially improved the quality of the quadcopter control. The proposed 
adaptive PID control system with gain scheduling proved to be 
more suitable to control the response of a quadcopter with varia-
ble mass than classical PID controllers with fixed gains. The 
controllers with gain scheduling used setpoints determined 
through the optimisation procedure. The control system was 
stable irrespective of the quadcopter mass. 

Despite significant measurement noise produced by the plant, 
the filter design process determines derivatives of signals with 
small errors. The use of PID controllers with fixed gains as well as 
low-pass and differential filters improved the plant response con-
siderably. However, much higher control quality was observed for 
PID controllers with gain scheduling. 

The identification procedure allows us to accurately estimate 
the quadcopter mass and, consequently, select the appropriate 
setpoints of the controllers (Fig. 5). The proposed control system 
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offers stable control of a quadcopter, it can be used with most 
commercially available controllers as it does not require high 
computational capacity. 

The key advantage of the adaptation procedure with gain 
scheduling is that it allows the controller gains to vary depending 
on operating conditions (Figs. 10–12). This indicates that the 
controller can adapt to changes in plant dynamics and the operat-
ing environment. By adjusting the controller gains in RT, the con-
troller can maintain stability and improve its tracking performance. 

In contrast, other adaptation procedures, such as the adaptive 
control and model reference adaptive control, require controller 
gains to be adjusted based on the system's estimated parameters. 
This approach can be less effective as the estimated parameters 
may not accurately reflect plant dynamics or operating conditions.  

Another advantage of gain scheduling is its ability to handle 
nonlinearities in plant dynamics (Figs. 6–9). Nonlinearities can 
cause the controller to behave unpredictably, leading to instability 
and poor performance. However, gain scheduling can account for 
these nonlinearities by adjusting the controller gains based on the 
specific operating conditions (Tab. 1). 

Overall, the adaptation procedure with gain scheduling is a 
good method of control as it can adapt to changes in the plant 
dynamics and operating conditions, handle nonlinearities and 
provide excellent tracking performance. 

The article discusses an adaptive PID control system devel-
oped to control a quadcopter. Based on the IAE index (Tab. 2), we 
can conclude that the developed gain scheduling control system 
achieves better results than the other tested control systems. 
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