PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance Enhancement of Polyethersulfone-Based Ultrafiltration Membrane Decorated by Titanium Dioxide Nanoparticles for Dye Filtration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study describes the modification of a polyethersulfone (PES)-based membrane by embedding titanium dioxide (TiO2 ) nanoparticles. The prepared composite membranes are then characterized and applied for melechate green dye (MG) filtration from water to asses its filtering capabilities. The effect of TiO2 contents on the morphology and filtration performance of the prepared composite membranes was evaluated by Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis. The blended membranes displayed improved water permeability and dye rejection compared to the plain PES. The membrane characterization results showed that compared to the plain PES membrane, the porosity of pure membrane increased (from 15.1% to 34.7%) with increasing the percentage of the embedded TiO2 . Then, the optical performance of the prepared membranes was examined in a cross-flow filtration system to separate MG dye from water. The filtration experiments showed that the composite PES/TiO2 membrane of 1.5 wt.% TiO2 has the best separation performance (permeate flux of 45 L/m2 .hr and dye removal efficiency of 80%).
Twórcy
autor
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Ahmad, A.L., Abdulkarim, A.A., Shafie, Z.M.H.M., Ooi, B.S. 2017. Fouling evaluation of PES/ZnO mixed matrix hollow fiber membrane. Desalination, 403, 53–63.
  • 2. Ahmad, A.L., Otitoju, T.A., Ooi, B.S. 2018. Optimization of a high performance 3-aminopropyl-triethoxysilane-silica impregnated polyethersulfone membrane using response surface methodology for ultrafiltration of synthetic oil-water emulsion. J. Taiwan Inst. Chem. Eng., 93, 461–476.
  • 3. Al-Bayati, I.S., Abd Muslim Mohammed, S., Al-Anssari, S. 2023. Recovery of methyl orange from aqueous solutions by bulk liquid membrane process facilitated with anionic carrier. AIP Conf. Proc., 2414, 1–7. https://doi.org/10.1063/5.0114631
  • 4. Al-Furaiji, M., Waisi, B., Kalash, K., Kadhom, M. 2022. Effect of polymer substrate on the performance of thin-film composite nanofiltration membranes. Int. J. Polym. Anal. Charact., 27, 316–325. https://doi.org/10.1080/1023666X.2022.2073008
  • 5. Al-Okaidy, H.S., Waisi, B.I. 2023. The effect of electrospinning parameters on morphological and mechanical properties of PAN-based nanofibers membrane. Baghdad Sci. J., 20, 1433–1441. https://doi.org/10.21123/bsj.2023.7309
  • 6. Alkarbouly, S.M, Waisi, B.I. 2022a. Fabrication of electrospun nanofibers membrane for emulsified oil removal from oily wastewater. Baghdad Sci. J., 1238–1248.
  • 7. Alkarbouly, S.M., Waisi, B.I. 2022b. Dual-layer antifouling membrane of electrospun PAN: PMMA nonwoven nanofibers for oily wastewater treatment. In: Proceedings of 2nd International Multi-Disciplinary Conference Theme: Integrated Sciences and Technologies., 1–10.
  • 8. Copello, G.J., Mebert, A.M., Raineri, M., Pesenti, M.P., Diaz, L.E. 2011. Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/ SiO2 hybrid materials obtained by the sol–gel method. J. Hazard. Mater., 186, 932–939.
  • 9. Fang, Y., Duranceau, S.J. 2013. Study of the effect of nanoparticles and surface morphology on reverse osmosis and nanofiltration membrane productivity. Membranes (Basel), 3, 196–225. https://doi.org/10.3390/membranes3030196
  • 10. Han, B., Zhang, D., Shao, Z., Kong, L., Lv, S. 2013. Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes. DES, 311, 80–89. https://doi.org/10.1016/j.desal.2012.11.002
  • 11. Hołda, A.K., Vankelecom, I.F.J. 2015. Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polym. Sci., 132, 42130. https://doi.org/10.1002/app.42130
  • 12. Hu, A., Liang, R., Zhang, X., Kurdi, S., Luong, D., Huang, H., Peng, P., Marzbanrad, E., Oakes, K.D., Zhou, Y., Servos, M.R. 2013. Enhanced photocatalytic degradation of dyes by TiO2 nanobelts with hierarchical structures. J. Photochem. Photobiol. A Chem., 256, 7–15.
  • 13. Kakar, M.R., Hamzah, M.O., Valentin, J. 2015. A review on moisture damages of hot and warm mix asphalt and related investigations. J. Clean. Prod., 99, 39–58.
  • 14. Khalaf, Z.A., Hassan, A.A. 2021. Studying of the effect of many parameters on a bulk liquid membrane and its opposition in Cd(II) removal from wastewater. J. Phys. Conf. Ser. 1973. https://doi.org/10.1088/1742-6596/1973/1/012097
  • 15. Li, J.-F., Xu, Z.-L., Yang, H., Yu, L.-Y., Liu, M. 2009. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl. Surf. Sci., 255, 4725–4732.
  • 16. Luo, M.L., Wen, Q.Z., Liu, H.J., Liu, J.L. 2009. Effect of TiO2 nanoparticles on the hydrophilicity of sulfonated-polyethersulfone. In: Advanced Materials Research. Elsevier, 663–666. https://doi.org/10.4028/www.scientific.net/AMR.79-82.663
  • 17. Mahmood, O.A.A., Waisi, B.I. 2021. Synthesis and characterization of polyacrylonitrile based precursor beads for the removal of the dye malachite green from its aqueous solutions. Desalin. Water Treat., 216, 445–455. https://doi.org/10.5004/dwt.2021.26906
  • 18. Mohammed, M.A., Al-bayati, I.S., Alobaidy, A.A., Waisi, B.I., Majeed, N. 2023b. Investigation the efficiency of emulsion liquid membrane process for malachite green dye separation from water. Desalin. Water Treat., 307, 190–195. https://doi.org/10.5004/dwt.2023.29903
  • 19. Mohammed, N.A., Alwared, A.I., Salman, M.S. 2020. Photocatalytic degradation of reactive yellow dye in wastewater using H2 O2 /TiO2 /UV technique. Iraqi J. Chem. Pet. Eng., 21, 15–21. https://doi.org/10.31699/ijcpe.2020.1.3
  • 20. Mustafa, N., Al -Nakib, H. 2013. Reverse osmosis polyamide membrane for the removal of blue and yellow dye from waste water. Iraqi J. Chem. Pet. Eng., 14, 49–55.
  • 21. Parvizian, F., Ansari, F., Bandehali, S. 2020. Chemical engineering research and design oleic acid-functionalized TiO2 nanoparticles for fabrication of PES-based nanofiltration membranes. Chem. Eng. Res. Des. 156, 433–441. https://doi.org/10.1016/j.cherd.2020.02.019
  • 22. Rajesh, S., Shobana, K.H., Anitharaj, S., Mohan, D.R. 2011. Preparation, morphology, performance, and hydrophilicity studies of poly (amide-imide) incorporated cellulose acetate ultrafiltration membranes. Ind. Eng. Chem. Res., 50, 5550–5564.
  • 23. Razmjou, A., Mansouri, J., Chen, V. 2011. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J. Memb. Sci., 378, 73–84.
  • 24. Sabeeh, H., Waisi, B.I.W. 2022. Effect of solvent type on PAN–based nonwoven nanofibers membranes characterizations. Iraqi J. Chem. Pet. Eng., 23, 43–48. https://doi.org/10.31699/ijcpe.2022.4.6
  • 25. Saberi, S., Shamsabadi, A.A., Shahrooz, M., Sadeghi, M., Soroush, M. 2018. Improving the transport and antifouling properties of poly (vinyl chloride) hollow-fiber ultrafiltration membranes by incorporating silica nanoparticles. ACS Omega, 3, 17439–17446.
  • 26. Saeedi-Jurkuyeh, A., Jafaria, A.J., Kalantary, R.R., Esrafili, A. 2020. A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions. React. Funct. Polym. 146, 104397.
  • 27. Shoparwe, N.F., Otitoju, T.A., Ahmad, A.L. 2018. Fouling evaluation of polyethersulfone (PES)/sulfonated cation exchange resin (SCER) membrane for BSA separation. J. Appl. Polym. Sci., 135, 45854.
  • 28. Sile-Yuksel, M., Tas, B., Koseoglu-Imer, D.Y., Koyuncu, I. 2014. Effect of silver nanoparticle (AgNP) location in nanocomposite membrane matrix fabricated with different polymer type on antibacterial mechanism. Desalination, 347, 120–130. https://doi.org/10.1016/j.desal.2014.05.022
  • 29. Sotto, A., Rashed, A., Zhang, R.X., Martínez, A., Braken, L., Luis, P., Van der Bruggen, B. 2012. Improved membrane structures for seawater desalination by studying the influence of sublayers. Desalination, 287, 317–325.
  • 30. Waisi, B.I., Al-jubouri, S.M., Mccutcheon, R. 2019. Fabrication and characterizations of silica nanoparticle embedded carbon nanofibers. Ind. Eng. Chem. Res., 58, 4462–4467. https://doi.org/10.1021/acs.iecr.8b05825
  • 31. Waisi, B.I., Arena, J.T., Benes, N.E., Nijmeijer, A., McCutcheon, J.R. 2020. Activated carbon nanofiber nonwoven for removal of emulsified oil from water. Microporous Mesoporous Mater., 296, 109966. https://doi.org/10.1016/j.micromeso.2019.109966
  • 32. Zhou, Z.H., Xue, J.M., Chan, H.S.O., Wang, J. 2002. Nanocomposites of ZnFe2 O4 in silica: synthesis, magnetic and optical properties. Mater. Chem. Phys., 75, 181–185.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1ea1e42-858d-4c34-91fe-fb6777586a9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.