PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of electrical stress on printed polymer resistors filled with carbon nanomaterials

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Superior electrical properties of carbon nanotubes were utilized by the authors in the fabrication of printed resistors. In common applications such as electrodes or sensors, only basic electrical and mechanical properties are investigated, leaving aside other key parameters related to the stability and reliability of particular elements. In this paper we present experimental results on the properties of printed resistive layers. One of the most important issues is their stability under high currents creating excessive thermal stresses. In order to investigate such behavior, a high direct current stress test was performed along with the observation of temperature distribution that allowed us to gain a fundamental insight into the electrical behavior at such operating conditions. These experiments allowed us to observe parametric failure or catastrophic damage that occurred under excessive supply parameters. Electrical parameters of all investigated samples remained stable after applying currents inducing an increase in temperature up to 130 C and 200 C. For selected samples, catastrophic failure was observed at the current values inducing temperature above 220C and 300C but in all cases the failure was related to the damage of PET or alumina substrate. Additional experiments were carried out with short high voltage pulse stresses. Printed resistors filled with nanomaterials sustained similar voltage levels (up to 750 V) without changing their parameters, while commonly used graphite filled polymer resistors changed their resistance value.
Wydawca
Rocznik
Strony
548--554
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw, Poland
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw, Poland
  • Industrial Research Institute for Automation and Measurements Al. Jerozolimskie 202, 02-486 Warsaw, Poland
Bibliografia
  • [1] DOMINGOS H., WUNSCH D., IEEE Transactions on Parts, Hybrids, and Packaging, 11, 3 (1975), 225.
  • [2] AMERASEKERA A., VAN DEN ABEELEN W., VANROOZENDAAL L., HANNEMANN M., SCHOFIELD P., IEEE Transactions on Electron Devices, 39, 2 (1992), 430.
  • [3] WUNSCH D., 3rd EOS/ESD Symposium Proceedings, (1981), 167.
  • [4] WEI B., VAJTAI R., AJAYAN P., Applied Physics Letters, 79, 8 (2001), 1172.
  • [5] HONG S., MYUNG S., Nature Nanotechnology, 2, 4 (2007), 207.
  • [6] KOZLOWSKI J. M., TANCULA M., Electrocomponent Science and Technology, 9 (1982), 185.
  • [7] SZELOCH R. F., BRYDAK K., BOREK R., DZIEDZIC A., GOLONKA L., Proc. RELECTRONIC ’88, 7th Symp on Reliability in Electronics, Budapest (1988), 606.
  • [8] DZIEDZIC A., Grubowarstwowe rezystywne mikrokompozyty polimerowo-w˛eglowe, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2001.
  • [9] SŁOMA M. et al., Journal of Materials Science: Materials in Electronics, Vol. 22, N. 9 (2010), 1321.
  • [10] SIBINSKI M., ZNAJDEK K., WALCZAK S., SŁOMA M., GÓRSKI M., CENIAN A., Materials Science and Engineering: B, Vol. 177, I. 15 (2012), 1292.
  • [11] SIBI ´NSKI M., JAKUBOWSKA M., ZNAJDEK K.,SŁOMA M., GUZOWSKI B., Optica Applicata, Vol. 41, N. 2 (2011), 375.
  • [12] JAKUBOWSKA M., SŁOMA M., MŁO ˙ZNIAK A., Materials Science and Engineering: B, Vol. 176, I. 4 (2011), 358.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1e9eb10-3dc6-4db1-901c-55128f40c415
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.