Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The temperature-stress state of the concrete facade wall with a window opening, which is the external enclosing structure of the room with a steel heating device, was investigated by the method of numerical modeling. Estimated studies were performed for winter period when the heating system of the building is functioning. According to the results of solving the system of equations of thermal stress and equation of thermal conductivity, the temperature distribution over the wall volume and distribution of normal and tangential stresses were determined. Areas of the wall where these stresses are maximum were identified. The research was performed for cases of both, absence and presence of a heat-insulating layer on the outer surface of the facade wall. From comparison of the results obtained for these two options, it follows that the external thermal insulation coating not only helps to reduce dissipative heat loss through the facade wall, but also reduces the absolute values of stresses in the concrete wall arising resulting from temperature deformations. In some cases, the sign of stresses changes from stretching (wall without external insulation) to compressive (wall with insulation).
Czasopismo
Rocznik
Tom
Strony
123--131
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Department of thermophysical basics of energy-saving technologies Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine, Tel.: +380-50-312-46-76
autor
- Department of thermophysical basics of energy-saving technologies Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine
autor
- Department of Building Physics and Renewable Energy Kielce University of Technology, Kielce, Poland
autor
- Department of thermophysical basics of energy-saving technologies Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine
Bibliografia
- 1. Abahri, K., Belarbi, R., Trabelsi, A., 2011. Contribution to analytical and numerical study of combined heat and moisture transfers in porous building materials, Building and environment. 46 (7), 1354–1360, DOI: 10.1016/j.buildenv.2010.12.02010.1016/j.buildenv.2010.12.020
- 2. Alshboul, A.A., Alkurdi, N.Y., 2019. Enhancing the Strategies of Climate Responsive Architecture. The Study of Solar Accessibility for Buildings Standing on Sloped Sites. Modern Applied Science, 13 (1), 69-84, DOI: 10. 5539/mas.v13n1p6910.5539/mas.v13n1p69
- 3. Aksamija, A., 2015., Design methods for sustainable, high-performance building facades. Advances in Building Energy Research, 10(2), 1-23, DOI: 10.5539/mas.v13n1p6910.5539/mas.v13n1p69
- 4. Albatayneh, A., Alterman D., Page A., Moghtaderi B., 2018. The significance of building design for the climate. Environmental and Climate Technologies, 22, 165-178, DOI: 10.2478/rtuect-2018-001110.2478/rtuect-2018-0011
- 5. Albatayneh, A., 2021. Optimising the parameters of a building envelope in the east mediterranean Saharan, cool climate zone. Buildings, 11, 43, DOI: 10.3390/buildings1102004310.3390/buildings11020043
- 6. Alexandrovsky, S.V., 1966. Calculation of concrete and reinforced concrete structures for temperature and humidity effects. Stroyizdat, Moskow, Russian.
- 7. Al-Sanea, S.A., Zedan, M.F., Al-Hussain, S.N., 2012. Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential. Applied Energy, Elsevier Ltd, 89, 430-442.10.1016/j.apenergy.2011.08.009
- 8. Arvind, R. 2016. Investigation of cracks in buildings. “Forensic Structural Engineering” a National conference in VIT Chennai, campus, 1.
- 9. Aste, N., Leonforte, F., Manfren. M., Mazzon M., 2015. Thermal inertia and energy efficiency – parametric simulation assessment on a calibrated case study. Appl Energy, 145, 111-123, DOI: 10.1016/j.apenergy.2015.01.08410.1016/j.apenergy.2015.01.084
- 10. Boley, B., Weiner, J., 2013. Theory of Thermal Stresses. Dover Publications, Incorporated, New York
- 11. Barashkov, V.N., Smolina, I.Yu., Puteeva L.E., Pestsov, D.N., 2012. Foundations of the theory of elasticity. Publishing house of TGASU, Tomsk, Russian.
- 12. Basok, B., Davydenko, B., Goncharuk, S., 2013. Different variants of thermorenovation of enclosing constructions of floor part in the existing office building and monitoring of heat losses during its protracted exploitation. Science and Innovations, 9(2), 18-21, Ukrainian, DOI: 10.15407/scin9.02.01810.15407/scin9.02.018
- 13. Basok, B., Davydenko, B., Timoshchenko, A., Goncharuk, S., 2016. Temperature and humidity conditions of wall construction with layer of insulation in the winter period. Industrial Heat Engineering, 38(6), 38-46, Ukrainian, DOI: 10.31472/ihe.6.2016.0610.31472/ihe.6.2016.06
- 14. Costanzo, G., Iacovella, S., Ruelens, F., Leurs, T., Claessens, B., 2016. Experimental analysis of data-driven control for a building heating system. Sustainable Energy, Grids and Networks, Elsevier, 6, 81–90, arXiv: 1507.0363810.1016/j.segan.2016.02.002
- 15. Harkouss, F., Fardoun, F., Biwole, P.H., 2018. Passive design optimization of low energy buildings in different climates. Energy, Elsevier, 165(PA), 591-613, DOI: 10.1016/j.energy.2018.09.01910.1016/j.energy.2018.09.019
- 16. Hemsath, T.L, Bandhosseini, K.A., 2015. Sensitivity analysis evaluating basic building geometry’s effect on energy use. Renewable Energy, 76, 526-38, DOI: 10.1016/j.renene.2014.11.04410.1016/j.renene.2014.11.044
- 17. Isachenko, V.P., Osipova, V.A., Sukomel, A.S., 1975. Heat transfer, Energiya Moscow, Russian
- 18. Kalema, T., Johannesson, G., Pylsy, P., Hagengran, P., 2008. Accuracy of energy analysis of buildings: a comparison of a monthly energy balance method and simulation methods in calculating the energy consumption and the effect of thermal mass. Journal of Building Physics, 32, 101-130, DOI: 10.1177/174425910809392010.1177/1744259108093920
- 19. Kamal, M.A., 2020. Technological interventions in building facade system: energy efficiency and environmental sustainability, Architecture research, 10(2), 45-53, DOI: 10.5923/j.arch.20201002.01
- 20. Kovalenko, A.D., 1970. Fundamentals of thermoelasticity. Naukova Dumka, Kiev, Ukraine
- 21. Krichevskii, A.P., 1984. Calculation of reinforced concrete engineering structures for temperature effects, Stroyizdat, Moscow
- 22. Kossecka, E., Kosny, J., 2002. Influence of insulation configuration on heating and cooling loads in a continuously used building. 2002, Energy and buildings, 34, 321-331, DOI:10.1016/S0378-7788(01)00121-910.1016/S0378-7788(01)00121-9
- 23. Kylili, A., Fokaides, P.A., 2015. Numerical simulation of phase change materials for building applications: A review. Advances in building energy research, 11, 1-25, DOI: 10.1080/17512549.2015.111646510.1080/17512549.2015.1116465
- 24. Kontoleon, K.J., Eumorfopoulou, E.A., 2008. The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region. Renewable Energy, 33, 1652-1664, DOI: 10.1016/j.renene.2007.09.00810.1016/j.renene.2007.09.008
- 25. Lechner, N., 2014. Heating, Cooling, Lighting: Sustainable Design Methods for Architects. John, Wiley & Sons, New York, United States
- 26. Paruta, V., 2012. Theoretical premises for optimizing the formulation and technological parameters of plaster mortars for walls made of aerated concrete blocks. Civil Engineering Journal, 30-36, DOI: 10.5862/MCE.34.410.5862/MCE.34.4
- 27. Reynders, G.T., 2013. Potential of structural thermal mass for demand-side management in dwellings. Building and environment, Elsevier Science, 64, 187-199, DOI: 10.1016/j.buildenv.2013.03.01010.1016/j.buildenv.2013.03.010
- 28. Snegirev, A.I., Alkhimenko, A.I., 2008. Influence of the short circuit temperature during erection on stresses in load-bearing structures, Engineering and construction journal, Russian, 2, 8-16, https://engstroy.spbstu.ru/userfiles/files/2008/1(2)/01.pdf
- 29. Tariku, F., Kumaran, K., Fazio, P., 2010. Integrated analysis of whole building heat, air and moisture transfer. International Journal of Heat and Mass Transfer, 53(15-16), 3111-3120, DOI: 10.1016/j.ijheatmasstransfer.2010.03.01610.1016/j.ijheatmasstransfer.2010.03.016
- 30. Umnyakova, N.P., 2013. Durability of three-layer walls with brick cladding with a high level of thermal protection. Vestnik MGSU, Russian, 94-100.10.22227/1997-0935.2013.1.94-100
- 31. Viot, H., Sempey, A., Pauly, M., Mora, L., 2015. Comparison of different methods for calculating thermal bridges: Application to wood-frame buildings. Building and environment, Elsevier Science, 93, 339-348, DOI 10.1016/j.buildenv.2015.07.01710.1016/j.buildenv.2015.07.017
- 32. Zhang, Z.L., Wachenfeldt, B.J., 2009. Numerical study on the heat storing capacity of concrete walls with air cavities. Energy and Buildings, Elsevier, 41, 769-773, DOI: 10.1016/j.enbuild.2009.02.01210.1016/j.enbuild.2009.02.012
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1e04289-d1d7-45cf-8756-549695bab64c