PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reparametrization of the BKW Equation of State for CHNO Explosives which Release no Condensed Carbon upon Detonation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
The BKW equation parameters and gaseous product co-volumes were reparametrized for CHNO explosives which release no condensed carbon when detonated. This estimation has led to a more reliable (correct) parameter set of the BKW equation because all of the possible errors due to the uncertainties in the phase composition and equation of state for nanoscale condensed carbon, the inhomogeneity of composite explosives, and so forth, are eliminated. The estimation was performed using an optimization database of 24 explosives, including 121 measurements of detonation velocity and pressure. Three parameters of the BKW equation and the co-volumes of 45 gaseous products were optimized. A set of 10 explosives having a small negative oxygen balance was checked. The resulting set provides a several-fold smaller error in calculating the detonation velocity and a more accurate prediction of the detonation pressure, as compared to the known sets of BKWRDX, BKWR, BKWS, and BKWC.
Rocznik
Strony
651--669
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences, Biysk 659322, Altai Krai, Russia
Bibliografia
  • [1] Cowan R.D., Fickett W., Calculation of Detonation Properties of Solid Explosives with Kistiakowsky-Wilson Equation of State, J. Chem. Phys., 1956, 24(5), 932-939.
  • [2] Mader C.L., Detonation Properties of Condensed Explosives Computed Using the Becker-Kistiakosky-Wilson Equation of State, Los Alamos Scientific Laboratory Report LA-2900, 1963.
  • [3] Mader C.L., Numerical Modeling of Explosives and Propellants, 3rd ed., CRC Press, Boca Raton 2007; ISBN 978-1420052381.
  • [4] Finger M., Lee E., Helm F.H., Hayes B., Hornig H., McGuire R., Kahara M., Guidry M., The Effect of Elemental Composition on the Detonation Behavior of Explosives, Symp. Int. on Detonation, Coronado, USA, 1976, pp. 710-722.
  • [5] Hobbs M.L., Baer M.R., Nonideal Thermoequilibrium Calculations Using a Large Product Species Data Base, Shock Waves, 1992, 2(3), 177-187.
  • [6] Hobbs M.L., Baer M.R., Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, 10th Symp. Int. on Detonation, Boston, USA 1993, pp. 409-418.
  • [7] Fried L.E., Souers P.C., BKWC: An Empirical BKW Parametrization Based on Cylinder Test Data, Propellants Explos. Pyrotech., 1996, 21(4), 215-223.
  • [8] Xiong W., A Study on Thermodynamic Function of Detonation Products, Propellants Explos. Pyrotech., 1985, 10(2), 47-52.
  • [9] Vaullerin M., Espagnacq A., Reparametrization of the BKW Equation of State for the Triazoles and Comparison of the Detonation Properties of HMX, TNMA and NTO by Means of Ab-Initio and Semiempirical Calculations, Propellants Explos. Pyrotech., 1998, 23(2), 73-76.
  • [10] Suceska M., Calculation of the Detonation Properties of C-H-N-O Explosives, Propellants Explos. Pyrotech., 1991, 16(4), 197-202.
  • [11] Suceska M., EXPL05 − Computer Program for Calculation of Detonation Parameters, 32nd Int. Annu. Conf. ICT, Karlsruhe, Germany, 2001, pp. 110.1-13.
  • [12] Titov V.M., Anisichkin V.F., Mal’kov I.Yu., Synthesis of Ultradispersed Diamond in Detonation Waves, Combust., Explos. Shock Waves (Engl. Transl.), 1989, 25(3), 372-379.
  • [13] Gubin S.A., Odintsov V.V., Pepekin V.I., Thermodynamic Calculation of Ideal and Nonideal Detonation, Combust., Explos. Shock Waves (Engl. Transl.), 1987, 23(4), 446-454.
  • [14] Kozyrev N.V., Using the Tracer Method to Study Detonation Processes, Combust., Explos. Shock Waves (Engl. Transl.), 2008, 44(6), 698-703.
  • [15] Dean J.A., Lange’s Handbook of Chemistry, 15th ed., McGraw-Hill, Inc., New York, USA, 1999; ISBN 9780070163843.
  • [16] Urbanski T., Chemistry and Technology of Explosives, vol. 3, PWN (Polish Scientific Publisher), Warsaw, 1967; ISBN 9780080104010.
  • [17] Yakovleva G.S., Kurbangalina R.K., Stesik L.N., Rate of Detonation of Hydrazonium Azide, Combust., Explos. Shock Waves (Engl. Transl.), 1974, 10(2), 233-235.
  • [18] Meyer R., Kohler J., Horburg A., Explosives, 6th ed., Wiley-VCH, Weinheim, Germany 2007; ISBN 978-3-527-31656-4.
  • [19] ICT Database of Thermochemical Values, Version 2.0, ICT, Karlsruhe, Germany, 1999.
  • [20] Pepekin V.I., Kostikova L.M., Afanas’ev G.T., Explosive Properties of 1,2-Dinitroguanidine, 35th Int. Annu. Conf. ICT, Karlsruhe, Germany, 2004, P. 95.
  • [21] Miroshnichenko E.A., Kon’kova T.S., Matyushin Yu.N., Thermochemistry of Primary Nitramines, Doklady Physical Chemistry, 2003, 392(4-6), 253-255.
  • [22] Pepekin V.I., Limiting Detonation Velocities and Limiting Propelling Powers of Organic Explosives, Doklady Physical Chemistry, 2007, 414(2), 159-161.
  • [23] Bogdanova Yu.A., Gubin S.A., Korsunskii B.L., Pepekin V.I., Detonation Characteristics of Powerful Insensitive Explosives, Combust., Explos. Shock Waves (Engl. Transl.), 2009, 45(6), 738-743.
  • [24] Ornellas D.L., Calorimetric Determinations of the Heat and Products of Detonation for Explosives, Report UCRL-52821, 1982.
  • [25] Steinberg D.J., Comparison of Experimental Data on Detonation Velocity and Chapman-Jouguet Pressure vs. Initial HE Density with Predictions from Ree’s Model Equation of State, 8th Symp. Int. on Detonation, Albuquerque, USA, 1985, pp. 513-520.
  • [26] Simpson R.L., Urtiew P.A., Ornellas D.L., Moody G.L., Scribner K.J., Hoffman D.M., CL-20 Performance Exceeds that of HMX and Its Sensitivity is Moderate, Propellants Explos. Pyrotech., 1997, 22(5), 249-255.
  • [27] Ramsay J.B., Chiles W.C., Detonation Characteristics of Liquid Nitric Oxide, 6th Symp. Int. on Detonation, Coronado, USA, 1976, pp. 723-728.
  • [28] Schott G.L, Davis W.C., Chiles W.C., Initiation and Detonation Measurements on Liquid Nitric Oxide, 9th Symp. Int. on Detonation, Portland, USA, 1989, pp. 1335-1345.
  • [29] Kurbangalina R.Kh., Patskov E.A., Stesik L.N. Yakovleva G.S., Detonation of Liquid Hydrazoic Acid and of Its Aqueous Solutions (in Russian), Zhurnal Prikladnoi Mekhaniki i Fizicheskoi Khimii, 1970, 4, 160-165.
  • [30] Yakovleva G.S., Kurbangalina R.Kh., Stesik L.N., Rate of Detonation of Hydrazonium Azide, Combust., Explos. Shock Waves (Engl. Transl.), 1974, 10(2), 233-235.
  • [31] Steen A.C., Kodde H.H., Miyake A., Detonation Velocities of the Non-ideal Explosive Ammonium Nitrate, Propellants Explos. Pyrotech., 1990, 15(2), 58-61.
  • [32] Souers P.C., A Library of Prompt Detonation Reaction Zone Data, UCRL-ID– 130055-Rev.1, 1998.
  • [33] Kotomin A.A., Dushenok S.A., Decomposition of a Series of Liquid Explosives and Their Solutions in the Detonation Wave (in Russian), Izvestiya Sankt- Peterburgskogo Gosudarstvennogo Tekhnologicheskogo Instituta, 2013, 21(47), 65-71.
  • [34] Khmelnitskiy L.I., Handbook on Explosives. Part II (in Russian), VIA Imeni Dzerzhinskogo (Publisher), Moscow, 1961.
  • [35] Fedoroff B.T., Aaronson H.A., Reese E.F., Sheffield O.E., Clift G.D., Encyclopedia of Explosives and Related Items, Vols. 1-10, Picatinny Arsenal, USA 1960-1983.
  • [36] Guo Y., Peng G., Song J., Xu L., The Detonation Reaction of Heterogeneous Composite Explosive, 1st and 2nd Symp. on Detonation, Washington, USA, 1955, pp. 327-342.
  • [37] Arkhipov V.I., Makhov M.N., Pepekin V.I., On Detonation of Composite Systems of the Oxidizer-Fuel Type (in Russian), Khimicheskaya Fizika, 1993, 12(12), 1640- 1643.
  • [38] Makhov M.N., Gogulya M.F., Dolgoborodov A.Yu., Brazhnikov M.A., Arkhipov V.I., Pepekin V.I., Acceleration Ability and Heat of Explosive Decomposition of Aluminized Explosives, Combust., Explos. Shock Waves (Engl. Transl.), 2004, 40(4), 458-466.
  • [39] Gogulya M.F., Makhov M.N., Brazhnikov M.A., Dolgoborodov A.Yu., Detonation Velocity of BTNEN/Al, Combust., Explos. Shock Waves (Engl. Transl.), 2006, 42(4), 480-485.
  • [40] Price D., The Detonation Velocity − Loading Density Relation for Selected Explosives and Mixtures of Explosives, Report NSWC TR 82-298, 1982.
  • [41] Hornig H.C., Lee E.L., Finger M., Equation of State of Detonation Products, 5th Symp. Int. on Detonation, Pasadena, USA, 1970, pp. 503-511.
  • [42] Akimova L.N., Gogulya M.F., Galkin V.N., Parameters of the Detonation of Low-density Condensed Explosives, Combust., Explos. Shock Waves (Engl. Transl.), 1978, 14(2), 248-251.
  • [43] Green L.G., Lee E.L., Detonation Pressure Measurements on PETN, 8th Symp. Int. on Detonation, Norfolk, USA, 2006, pp. 1144-1150.
  • [44] Shaw M.S., Johnson J.D., The Theory of Dense Molecular Fluid Equation of State with Application to Detonation Products, 8th Symp. Int. on Detonation, Albuquerque, USA, 1985, pp. 531-539.
  • [45] Akst I.B., Heat of Detonation, the Cylinder Test, and Performance in Munitions, 9th. Symp. Int. on Detonation, Portland, USA, 1989, pp. 478-488.
  • [46] Pepekin V.I., Korsunskii B.L., Matyushin Yu.N., Explosive Properties of Furoxanes, Combust., Explos. Shock Waves (Engl. Transl.), 2008, 44(1), 110-114.
  • [47] Mochalova V.M., Utkin A.V., Anan’in A.V., Effect of the Degree of Dispersion on the Detonation Wave Structure in Pressed TNETB, Combust., Explos. Shock Waves (Engl. Transl.), 2007, 43(5), 575-579.
  • [48] Kolesnikov S.A., Utkin A.V., Nonclassical Steady-state Detonation Regimes in Pressed TNETB, Combust., Explos. Shock Waves (Engl. Transl.), 2007, 43(6), 710-716.
  • [49.] Wu X., Long X.P., He B., Jiang X.H., VLW Equation of State of Detonation Products, Science in China Series B: Chemistry, 2009, 52(5), 605-608.
  • [50] Elbeih A., Pachmáň J., Zeman S., Thermal Stability and Detonation Characteristics of Pressed and Elastic Explosives on the Basis of Selected Cyclic Nitramines, Cent. Eur. J. Energ. Mater., 2010, 7(3), 217-232.
  • [51] Glushko V.P., Thermodynamic Properties of Individual Explosives (in Russian), 3rd ed., Nauka (Publisher), Moscow, 1979.
  • [52] Chase M.W., NIST-JANAF Thermochemical Tables, 4th ed., American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology, New York, 1998; ISBN 1563968312.
  • [53] Nelder J.A, Mead R., A Simplex Method for Function Minimization, Comput. J., 1965, 7(4), 308-313.
  • [54] Li-hua X., Ming-xuan W., En-pu W., Hui-min T., Bo-ren C., The Properties of 1,3,3,5,7,7-Hexanitro-l,5-diazacyclooctane (HCO) and Its Application in Propellants, Propellants Explos. Pyrotech., 1988, 13(1), 21-24.
  • [55] Cook M.A., The Science of High Explosives, Reinhold Publishing Corp., New York, 1958.
  • [56] Gimenez P., Chabin P., Mala J., et al., An Extensive Experimental Study of Pressed NTO, 10th Symp. Int. on Detonation, Boston, USA, 1993, pp. 276-283.
  • [57] Trzciński W.A., Cudziło S., Chyłek Z., Szymańczyk L., Determination of the Expansion Isentrope for Detonation Products of FOX-7, 38th Int. Annu. Conf. ICT., Karlsruhe, Germany, 2007, p. 142.
  • [58] Cook M.A., Keyes R.T., Partridge W.S., Ursenback W.O., Velocity-Diameter Curves, Velocity Transients and Reaction Rates in PETN, RDX, EDNA and Tetryl, J. Am. Chem. Soc., 1957, 79(1), 32-37.
  • [59] Östmark H., Helte A., Carlsson T., N-Guanylurea Dinitramide (FOX-12): a New Extremely Insensitive Energetic Material for Explosives Applications, 13th Symp. Int. on Detonation, Norfolk, USA, 2006, pp. 121-127.
  • [60] Watt D.S., Cliff M.D., TNAZ Based Melt-cast Explosives: Technology Review and AMRL Research Directions, Report No. DSTO-TR-0702, 1998.
  • [61] Dremin A.N., Pershin S.V., Pyaternev S.V., Tsaplin D.N., Discontinuity in the Relation between the Speed of Detonation and the Initial Density of TNT, Combust., Explos. Shock Waves (Engl. Transl.), 1989, 25(5), 649-652.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1d4a41e-19e4-4e09-95f4-971839659ed8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.