PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High Porous Ceramic for Oil/Water Separation: Calcite as a Sintering Aid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of calcite (CaCO3) as sintering aid on the preparation of local aluminum silicate microfiltration membranes were characterized in terms of morphology, thermal shrinkage behavior, porosity, permeation performance, and pure water permeate flux for the membrane. Material selection is based on availability and formability. In order to create a suspension, an organic solvent (N-methyl-2-pyrrolidone) and a polymer binder were added to a mixture of aluminum silicate and calcium carbonate. The coagulant bath consisted of water, and the suspension was extruded into a hollow fiber using a spinneret. The membrane precursor is subjected to high temperatures up to 1250 °C and this process called the sintering process gets strong hollow fiber with high mechanical stability. The addition of the CaCO3 to the dispersion altered the structure of the resulting sintered membranes. The obtained finding demonstrates that carbon calcium addition to aluminum silicate has an affirmative on overall porosity in contrast to those made from purely natural aluminum silicate, as a result the aluminum silicate calcite ceramic microfiltration membrane, which had a high porosity of above 50%, shows the highest permeability of 35.8 ml m-2•s-1 and above 97% oil rejection when operating at 0.15 MPa trans-membrane pressure in oil-in-water separation experiments. The results show that low-cost aluminum silicate-calcite component of ceramic membranes and the manufactured ceramic microfiltration membrane can handle emulsified oily wastewater.
Słowa kluczowe
Rocznik
Strony
88--95
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Petroleum Engineering Department, University of Kerbala, Karbala 56001, Iraq
  • Aeronautical Technical Engineering, Al-Farahidi University, Baghdad 10011, Iraq
  • Petroleum Engineering Department, University of Kerbala, Karbala 56001, Iraq
Bibliografia
  • 1. Baig, N., et al. 2022. Recent progress in microfiltration/ultrafiltration membranes for separation of oil and water emulsions. The Chemical Record, 22(7), e202100320.
  • 2. Bouzerara, F., et al. 2006. Porous ceramic supports for membranes prepared from kaolin and doloma mixtures. Journal of the European Ceramic Society, 26(9), 1663–1671.
  • 3. Bowen, W.R., Doneva T.A. 2000. Atomic force microscopy studies of nanofiltration membranes: surface morphology, pore size distribution and adhesion. Desalination, 129(2), 163–172.
  • 4. Dong, X., Al-Jumaily, A., Escobar I.C. 2018. Investigation of the use of a bio-derived solvent for non-solvent-induced phase separation (NIPS) fabrication of polysulfone membranes. Membranes, 8(2), 23.
  • 5. Hubadillah, S.K., et al. 2018. Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review. Ceramics International, 44(5), 4538–4560.
  • 6. Indraratna, B., Korkitsuntornsan, W., Nguyen T.T. 2020. Influence of Kaolin content on the cyclic loading response of railway subgrade. Transportation Geotechnics, 22, 100319.
  • 7. Liu, Z., et al. 2016. Investigation of internal concentration polarization reduction in forward osmosis membrane using nano-CaCO3 particles as sacrificial component. Journal of Membrane Science, 497, 485–493.
  • 8. Rashad, M., et al. 2021. A novel monolithic mullite microfiltration membrane for oil-in-water emulsion separation. Journal of Membrane Science, 620, 118857.
  • 9. Saboyainsta, L.V., Maubois J.-L. 2000. Current developments of microfiltration technology in the dairy industry. Le Lait, 80(6), 541–553.
  • 10. Sadykov, V.A., et al. 2022. Design of materials for solid oxide fuel cells, permselective membranes, and catalysts for biofuel transformation into syngas and hydrogen based on fundamental studies of their real structure, transport properties, and surface reactivity. Current Opinion in Green and Sustainable Chemistry, 33, 100558.
  • 11. Sanchez, C., et al. 2005. Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35–36), 3559–3592.
  • 12. Suwanmethanond, V., et al. 2000. Porous silicon carbide sintered substrates for high-temperature membranes. Industrial & engineering chemistry research, 39(9), 3264–3271.
  • 13. Wang, J., et al. 2022. Efficient oil-in-water emulsion separation in the low-cost bauxite ceramic membranes with hierarchically oriented straight pores. Separation and Purification Technology, 303, 122244.
  • 14. Yogarathinam, L.T., et al. 2022. Low-cost silica based ceramic supported thin film composite hollow fiber membrane from guinea corn husk ash for efficient removal of microplastic from aqueous solution. Journal of hazardous materials, 424, 127298.
  • 15. Zou, D., et al. 2019. One step co-sintering process for low-cost fly ash based ceramic microfiltration membrane in oil-in-water emulsion treatment. Separation and Purification Technology, 210, 511–520.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1ce0a67-055b-4297-bb8f-450457f672e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.