PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A three-dimensional exact state-space solution for cylindrical bending of continuously non-homogenous piezoelectric laminated plates with arbitrary gradient composition

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most of exact solutions reported for the analysis of functionally graded piezoelectric (FGP) plates are based on the assumption, that the graded plate consists of a number of layers, where the material properties within each layer are invariant. The limited works that consider the continuous variation of electro-mechanical properties are restricted to FGP materials with the exponent-law dependence on the thickness-coordinate. In the present paper, a three-dimensional (3D) exact solution is presented for cylindrical bending of the FGP laminated plates based on the state space formalism. In contrast to the other reported solutions which are restricted to FGP materials with the exponent-law dependence on the thickness-coordinate, the present exact solution considers materials with arbitrary compositional gradient. Moreover, no assumption on displacement components and the electric potential along the thickness direction of FGP layers is introduced. Regardless of the number of layers, equations of motion, charge equation, and the boundary and interface conditions are satisfied exactly. The obtained exact solution can be used to assess the accuracy of different FGP laminated plate theories and/or for validating finite element codes.
Rocznik
Strony
25--51
Opis fizyczny
Bibliogr. 43 poz., rys., wykr.
Twórcy
  • Faculty of Civil Engineering Hakim Sabzevari University Sabzevar, Iran
Bibliografia
  • 1. H.S. Tzou, M. Gadre, Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls, J. Sound Vib., 132, 433–450, 1989.
  • 2. H.S. Tzou, C.I. Tseng, Distributed piezoelectric sensor/actuator design for dynamic measurement /control of distributed parameter systems: a piezoelectric finite element approach, J. Sound Vib., 138, 1, 17–34, 1990.
  • 3. D.A. Saravanos, P.R. Heyliger, Coupled layer-wise analysis of composite beams with embedded piezoelectric sensors and actuators, J. Intell. Mater. Syst. Struct., 6, 350–363, 1995.
  • 4. P.R. Heyliger, D.A. Saravanos, Coupled discrete-layer finite elements for laminated piezoelectric plates, Commun. Numer. Methods Eng., 10, 12, 971–981, 1994.
  • 5. P.R. Heyliger, S.B. Brooks, Exact free vibration of piezoelectric laminates in cylindrical bending, Int. J. Solids Struct., 32, 2945–2960, 1995.
  • 6. S.B. Beheshti-Aval, M. Lezgy-Nazargah, A finite element model for composite beams with piezoelectric layers using a sinus model, J. Mech., 26, 2, 249–258, 2010.
  • 7. S.B. Beheshti-Aval, M. Lezgy-Nazargah, Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams, Smart Struct. Syst., 6, 8, 921–938, 2010.
  • 8. S.B. Beheshti-Aval, M. Lezgy-Nazargah, P. Vidal, O. Polit, A refined sinus finite element model for the analysis of piezoelectric laminated beams, J. Intell. Mater. Syst. Struct., 22, 203–219, 2011.
  • 9. S.B. Beheshti-Aval, M. Lezgy-Nazargah, A coupled refined high-order global-local theory and finite element model for static electromechanical response of smart multilayered/sandwich beams, Arch. Appl. Mech., 82, 12, 1709–1752, 2012.
  • 10. S.B. Beheshti-Aval, M. Lezgy-Nazargah, Coupled refined layerwise theory for dynamic free and forced response of piezoelectric laminated composite and sandwich beams, Meccanica, 48, 6, 1479–1500, 2013.
  • 11. M. Shariyat, Dynamic buckling of imperfect laminated plates with piezoelectric sensors and actuators subjected to thermo-electro-mechanical loadings, considering the temperature-dependency of the material properties, Compos. Struct., 88, 228–239, 2009.
  • 12. C. Niezrecki, D. Brei, S. Balakrishnan, A. Moskalik, Piezoelectric actuation: state of the art, Shock Vib. Dig., 33, 4, 269–280, 2001.
  • 13. X.H. Zhu, Z.Y. Meng, Operational principle, fabrication and displacement characteristic of a functionally gradient piezoelectric ceramic actuator, Sens. Actuators, A, 48, 169–176, 1995.
  • 14. C.C.M. Wu, M. Kahn, W. Moy, Piezoelectric ceramics with functional gradients: a new application in material design, J. Am. Ceram. Soc., 79, 809–812, 1996.
  • 15. G.R. Liu, J. Tani, Surface waves in functionally gradient piezoelectric plates, ASME J. Vib. Acoust., 116, 440–448, 1994.
  • 16. W.Q. Chen, H.J. Ding, On free vibration of a functionally graded piezoelectric rectangular plate, Acta Mech., 153, 207–216, 2002.
  • 17. H.J. Lee, Layerwise laminate analysis of functionally graded piezoelectric bimorph beams, J. Intell Mater. Syst. Struct., 16, 365–371, 2005.
  • 18. Y. Li, Z. Shi, Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature, Compos. Struct., 87, 257–264, 2009.
  • 19. J. Yang, H.J. Xiang, Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators, Smart Mater. Struct., 16, 784–797, 2007.
  • 20. B. Behjat, M. Salehi, M. Sadighi, A. Armin, M. Abbasi, Static, dynamic, and free vibration analysis of functionally graded piezoelectric panels using finite element method, J. Intell. Mater. Syst. Struct., 20, 1635–1646, 2009.
  • 21. B. Behjat, M. Salehi, A. Armin, M. Sadighi, M. Abbasi, Static and dynamic analysis of functionally graded piezoelectric plates under mechanical and electrical loading, Scientia Iranica, Transactions B: Mech. Eng., 18, 4, 986–994, 2011.
  • 22. X.H. Wu, C.Q. Chen, Y.P. Shen, A high order theory for functionally graded piezoelectric shells, Int. J. Solids Struct., 39, 5325–5344, 2002.
  • 23. T. Li, Y.H. Chen, J. Ma, Characterization of Fgm monomorph actuator fabricated using Epd, J. Mater. Sci., 40, 3601–3605, 2005.
  • 24. T.T. Liu, Z.F. Shi, Bending behavior of functionally gradient piezoelectric cantilever, Ferroelectrics, 308, 43–51, 2004.
  • 25. Z.F. Shi, Y. Chen, Functionally graded piezoelectric cantilever beam under load, Arch. Appl. Mech., 74, 237–247, 2004.
  • 26. H.J. Xiang, Z.F. Shi, Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load, Eur. J. Mech. A Solids, 28, 338–346, 2009.
  • 27. M. Lezgy-Nazargah, P. Vidal, O. Polit, An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams, Compos. Struct., 104, 71–84, 2013.
  • 28. M. Lezgy-Nazargah, M. Farahbakhsh, Optimum material gradient composition for the functionally graded piezoelectric beams, Int. J. Eng. Sci. Tech., 5, 4, 80–99, 2013.
  • 29. S. Brischetto, E. Carrera, Refined 2D models for the analysis of functionally graded piezoelectric plates, J. Intell. Mater. Syst. Struct., 20, 1783–1797, 2009.
  • 30. C.W. Lim, L.H. He, Exact solution of a compositionally graded piezoelectric layer under uniform stretch, bending and twisting, Int. J. Mech. Sci., 43, 2479–2492, 2001.
  • 31. J.N. Reddy, Z.Q. Cheng, Three-dimensional solutions of smart functionally graded plates, ASME J. Appl. Mech., 68, 234–241, 2001.
  • 32. Z. Zhong, E.T. Shang, Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate, Int. J. Solids Struct., 40, 5335–5352, 2003.
  • 33. P. Lu, H.P. Lee, C. Lu, An exact solution for functionally graded piezoelectric laminates in cylindrical bending, Int. J. Mech. Sci., 47, 437–458, 2005.
  • 34. P. Lu, H.P. Lee, C. Lu, Exact solutions for simply supported functionally graded piezoelectric laminates by Stroh-like formalism, Comput. Struct., 72, 352–363, 2006.
  • 35. P. Heyliger, S. Brooks, Exact solutions for laminated piezoelectric plates in cylindrical bending, J. Appl. Mech., 63, 903–910, 1996.
  • 36. F.R. Gantmakher, The Theory of Matrices, Chelsea, New York, 1959.
  • 37. M.C. Pease, Methods of Matrix Algebra, Academic Press, New York, 1965.
  • 38. V.I. Alshits, H.O.K. Kirchner, Elasticity of multilayers I. Basic equations and solutions, Phil. Mag. A, 72 (6), 1431–1444, 1995.
  • 39. V.I. Alshits, H.O.K. Kirchner, G.A. Maugin, Elasticity of multilayers: properties of the propagator matrix and some applications, Math. & Mech. Sol., 6, 5, 481–502, 2001.
  • 40. V.I. Alshits, G.A. Maugin, Dynamics of multilayers: elastic waves in an anisotropic graded or stratified plate, Wave Motion, 41, 357–394, 2005.
  • 41. A.L. Shuvalov, O. Poncelet, M. Deschamps, General formalism for plane guided waves in transversely inhomogeneous anisotropic plates, Wave Motion, 40, 413–426, 2004.
  • 42. A.L. Shuvalov, O. Poncelet, A.P. Kiselev, Shear horizontal waves in transversely inhomogeneous plates, Wave Motion, 45, 605–615, 2008.
  • 43. J.P. Nowacki, Electro-elastic coupled fields of the general line source in infinite multilayered piezoelectric medium, Arch. Mech. 64, 1, 3–19, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1cb773f-a754-4b51-9ac7-a88878d20a49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.