PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effectiveness of friction force reduction in sliding motion depending on the frequency of longitudinal tangential vibrations, sliding velocity and normal pressure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of experimental research and simulation analyses of the influence of slip velocity, normal pressures and vibration frequency on the effectiveness of friction force reduction carried out in sliding motion in the presence of forced tangential vibrations. In experimental studies, changes in the driving force were measured during the slip of the upper body over the vibrating lower body. The direction of these vibrations was parallel both to the contact plane and to the direction of movement of the shifted body. The simulation tests were carried out in the Matlab/Simulink environment through the use of numerical procedures that were specially created for this purpose. Dynamic friction models considering the tangential compliance of contact and the phenomenon of pre-sliding displacement were used for calculations. The paper presents the designated values of the so-called coefficient of average friction force reduction in sliding motion for the following friction pairs: steel C45–steel C45, steel C45–cast iron GGG40 and steel C45–polytetrafluoroethy-lene PTFE (Teflon). The results of numerical analyses were in good agreement with those of experimental tests. A significant dependence of the level of average friction force reduction on the frequency of forced vibrations, sliding velocity as well as the kind of sliding pair material, and normal pressures was shown.
Rocznik
Strony
490--498
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • *Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, al. Piastów 19, 70-310 Szczecin, Poland
  • *Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, al. Piastów 19, 70-310 Szczecin, Poland
  • *Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, al. Piastów 19, 70-310 Szczecin, Poland
Bibliografia
  • 1. Gutowski P, Leus M. Computational model for friction force estimation in sliding motion at transverse tangential vibrations of elastic contact support. Tribology International. 2015;90:455-462. https://doi.org/10.1016/j.triboint.2015.04.044
  • 2. Gutowski P, Leus M. Computational model of friction force reduction at arbitrary direction of tangential vibrations and its experimental verification. Tribology International. 2020;143:106065. https://doi.org/10.1016/j.triboint.2019.106065
  • 3. Gutowski P, Leus M. Estimation of the tangential transverse vibrations effect on the friction force with the use of LuGre model. Acta Mechanica. 2021;232(10):3849-3861. https://doi.org/10.1007/s00707-021-03033-1
  • 4. Gutowski P, Leus M. The effect of longitudinal tangential vibrations on friction and driving forces in sliding motion. Tribology International. 2012;55:108-118. https://doi.org/10.1016/j.triboint.2012.05.023
  • 5. Leus M. Investigation of the longitudinal tangential contact vibrations influence on the friction force. Doctoral thesis. 2010.
  • 6. Leus M, Gutowski P. Practical possibilities of utilization of tangential longitudinal vibrations for controlling the friction force and reduction of drive force in sliding motion. Mechanics and Mechanical Engineering. 2011;15(4):103-113.
  • 7. Rybkiewicz M, Gutowski P, Leus M. Experimental and numerical analysis of stick-slip suppression with the use of longitudinal tangential vibration. Journal of Theoretical and Applied Mechanics. 2020;58(3):637-648. https://doi.org/10.15632/jtam-pl/116594.
  • 8. Rybkiewicz M, Leus M. Selection of the friction model for numerical analyses of the impact of longitudinal vibration on stick-slip movement. Advances in Science and Technology Research Journal. 2021;15(3):277-287. https://doi.org/10.12913/22998624/141184
  • 9. Gao H, De Volder M, Cheng T, Bao G, Reynaerts D. A pneumatic actuator based on vibration friction reduction with bending longitudinal vibration mode. Sensors and Actuators A: Physical. 2016;252:112-119. https://doi.org/10.1016/j.sna.2016.10.039
  • 10. Kapelke S, Seemann W. On the effect of longitudinal vibrations on dry friction: Modelling aspects and experimental investigations. Tribology Letters. 2018;66(3):1-11. https://doi.org/10.1007/s11249-018-1031-0
  • 11. Kapelke S, Seemann W, Hetzler H. The effect of longitudinal highfrequency in-plane vibrations on a 1-DoF friction oscillator with compliant contact. Nonlinear Dynamics. 2017;88:3003-3015. https://doi.org/10.1007/s11071-017-3428-y
  • 12. Kumar VC, Hutchings IM. Reduction of sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration. Tribology International. 2004;37(10):833-40. https://doi.org/10.1016/j.triboint.2004.05.003
  • 13. Kutomi H, Sase N, Fujii H. Development of friction controller. Proceedings of the International Conf AMPT’99. 1999;I:605-612.
  • 14. Littmann W, Stork H, Wallaschek J. Reduction of friction using piezoelectrically excited ultrasonic vibrations. Proceedings of the SPIE’s 8th Annual International Symposium on Smart Structures and Material, Billingham, Washington 2001. 2001;302-311. https://doi.org/10.1117/12.432714
  • 15. Littmann W, Stork H, Wallaschek J. Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillations. Archive of Applied Mechanics. 2001;71:549-54. https://doi.org/10.1007/s004190100160
  • 16. Liu W, Ni H, Wang P, Zhao B. Analytical investigation of the friction reduction performance of longitudinal vibration based on the modified elastoplastic contact model. Tribology International. 2020;146: 106237. https://doi.org/10.1016/j.triboint.2020.106237
  • 17. Qu H, Zhou N, Guo W, Qu J. A model of friction reduction with inplane high-frequency vibration. Proceedings of the Institution of Mechanical Engineers. Part J: Journal of Engineering Tribology. 2016;230(8):962-967. https://doi.org/10.1177/135065011562101
  • 18. Sase N, Kurahashi T, Fujii M, Kutomi H, Fujii H. Control of friction coefficient between metal surfaces. Proceedings of the International Conference AMPT’97. 1997;2:609-615.
  • 19. Storck H, Littmann W, Wallaschek J, Mracek M. The effect of friction reduction in presence of ultrasonic vibrations and its relevance to traveling wave ultrasonic motors. Ultrasonic. 2002;40:379-383. http://dx.doi.org/10.1016/S0041-624X(02)00126-9
  • 20. Teidelt E, Starcevic J, Popov VL. Influence of ultrasonic oscillation on static and sliding friction. Tribology Letters. 2012;48:51-62. https://doi.org//10.1007/s11249-012-9937-4
  • 21. Tsai CC, Tseng CH. The effect of friction reduction in presence of inplane vibrations. Archive of Applied Mechanics. 2006;75:164-76. https://doi.org/10.1007/s00419-005-0427-0
  • 22. Wang P, Ni H, Wang R, Li Z, Wang Y. Experimental investigation of the effect of in-plane vibrations on friction for different materials. Tribology International. 2016;99:237-247. https://doi.org/10.1016/j.triboint.2016.03.021
  • 23. Wang P, Ni H, Wang R, Liu W, Lu S. Research on the mechanism of in-plane vibration on friction reduction. Materials. 2017;10(9):1-21. https://doi.org/10.3390/ma10091015
  • 24. Yang CL, Wu CS, Shi L. Analysis of friction reduction effect due to ultrasonic vibration exerted in friction stir welding. Journal of Manufacturing Processes. 2018;35:118-126. https://doi.org/10.1016/j.jmapro.2018.07.025
  • 25. Shao G, Li H, Zhan M. A Review on Ultrasonic Assisted Forming: Mechanism, Model, and Process. Chinese Journal of Mechanical Engineering. 2021;34(1):99. https://doi.org/10.1186/s10033-021-00612-0
  • 26. Chovdhury MA, Helali MM. The effect of frequency of vibration and humidity on the coefficient of friction. Tribology International. 2006; 39(9):958-962. https://doi.org/10.1016/j.triboint.2005.10.002
  • 27. Chovdhury MA, Helali MM. The effect of amplitude of vibration on the coefficient of friction for different materials. Tribology International. 2008;41(4):307-314. https://doi.org/10.1016/j.triboint.2007.08.005
  • 28. Hess DP, Soom A. Normal vibrations and friction under harmonic loads: part I – Hertzian contacts. Journal of Tribology. 1991;113(1): 80-86. https://doi.org/10.1115/1.2920607
  • 29. Popov M, Popov VL, Popov NV. Reduction of friction by normal oscillations. I. Influence of contact stiffness. Friction. 2017;5(1):45-55. https://doi.org/10.1007/s40544-016-0136-4
  • 30. Xinyu M, Popov VL, Stracevic J, Popov M. Reduction of friction by normal oscillations. II. In-plane system dynamics. Friction. 2017;5(2): 194-206. https://doi.org/10.1007/s40544-017-0146-x
  • 31. Cheng Y, Zhu PZ, Li R. The influence of vertical vibration on nanoscale friction: a molecular dynamics simulation study. Crystals. 2018;8(3):129. https://doi.org/10.3390/cryst8030129
  • 32. Dahl PR. A solid friction model. Technical Report TOR-158(3107-18), The Aerospace Corporation, El Segundo, CA. 1968.
  • 33. Dahl PR. Solid friction damping of mechanical vibrations. AIAA Journal. 1976;14(12):1675-1682. https://doi.org/10.2514/3.61511
  • 34. Dupont P, Armstrong B, Hayward V. Elasto-plastic friction model: contact compliance and stiction. Proceedings of the American Control Conference, Chicago, Illinois 2000. 2000:1072-1077. https://doi.org/10.1109/ACC.2000.876665
  • 35. Dupont P, Hayward V, Armstrong B, Altpeter F. Single state elastoplastic friction models. IEEE Transactions on Automatic Control. 2002;47(5):787-792. https://doi.org/10.1109/TAC.2002.1000274
  • 36. Leus M, Gutowski P. The experimental analysis of the tangential stiffness of the flat contact joints. Modelling in Engineering. 2009; 6(37):185-192 [in Polish].
Uwagi
This research was funded in whole by the National Science Centre, Poland; Grant No. 2021/05/X/ST8/01244.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1ca1119-06ea-41a9-8b08-d0eb90bcbf3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.