PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrochemical characterization of C45 carbon black-H3PMo12O40-polyvinylidene fluoride system

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Charakterystyka elektrochemiczna układu sadza węglowa C45-H3PMo12O40-polifluorek winylidenu
Języki publikacji
EN
Abstrakty
EN
The paper presents research of the C45 carbon black-phosphomolybdic acid-polyvinylidene fluoride (C45-MPA-PVDF) nanocomposite in 6M KOH with respect to the possibility of its use as an electrode material for energy storage. To evaluate electrochemical characteristics of electrodes, the cyclic voltammetry (CV) and chronopotentiometric (CP) techniques were used. It is shown that phosphomolybdic acid immobilized on conductive C45 carbon black surface is stable in strong alkaline solution. The influence of the modification of C45 carbon black with H3PMo12O40 on the capacity of a composite electrode was studied and discussed.
PL
W pracy przedstawiono badania nanokompozytu sadza węglowa C45-kwas fosforomolibdenowy-polifluorek winylidenu (C45-PMA- -PVDF) w 6M KOH pod kątem możliwości zastosowania go jako materiału elektrodowego do magazynowania energii. Do oceny właściwości elektrochemicznych badanych elektrod wykorzystano woltamperometrię cykliczną i galwanostatyczną technikę ładowania-rozładowania. Wykazano, że kwas fosfomolibdenowy unieruchomiony na powierzchni przewodzącej sadzy węglowej C45 jest stabilny w roztworze silnie alkalicznym. Przedstawiono i omówiono wpływ modyfikacji sadzy C45 za pomocą H3PMo12O40 na pojemność elektrody kompozytowej.
Rocznik
Tom
Strony
340--343
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Czestochowa, Poland
Bibliografia
  • [1] E. Yosuda, M. Inagaki, K. Kaneko, M. Endo, A. Oya, Y. Tanabe. 2003. Carbon Alloys: Novel Concepts to Develop Carbon Science and Technology. Amsterdam: Elsevier Science.
  • [2] R. Akbarzadeh, D. Hossein. 2018. “Intensified Electrochemical Hydrogen Storage Capacity of Multi-Walled Carbon Nanotubes Supported with Ni Nanoparticles”. Journal of Solid State Electrochemistry 22: 395–405. DOI: 10.1007/s10008-017-3765-2.
  • [3] Y. Yürüm, A. Taralp, T. Nejat Veziroglu. 2009. “Storage of Hydrogen in Nano-structured Carbon Materials”. International Journal of Hydrogen Energy 34 (9): 3784–3798. DOI: 10.1016/j.ijhydene.2009.03.001.
  • [4] B. Conway. 1999. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. New York: Kluwer Academic–Plenum Publishers. 5] E. Frackowiak, F. Béguin. 2001. “Carbon Materials for the Electrochemical Storage of Energy in Capacitors”. Carbon 39 (6): 937–950. DOI: 10.1016/S0008-6223(00)00183-4.
  • [6] M.A.A.M. Abdah, N.H.N. Azman, S. Kulandaivalu, Y. Sulaiman. 2020. “Review of the Use of Transition-Metal-Oxide and Conducting Polymer-Based Fibres for High-Performance Supercapacitors”. Materials and Design 186: 108199. DOI: 10.1016/j.matdes.2019.108199.
  • [7] H. Lv, Q. Pan, Y. Song, X.-X. Liu, T. Liu. 2020. “A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors”. Nano-Micro Letters 12 (1): 118–174. DOI: 10.1007/s40820-020-00451-z.
  • [8] S. Balasubramaniam, A. Mohanty, S.K. Balasingam, S.J. Kim, A. Ramadoss. 2020. “Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries”. Nano-Micro Letters 12 (1): 85–131. DOI: 10.1007/s40820-020-0413-7.
  • [9] K.-N. Kang, A. Ramadoss, J.-W. Min, J.-Ch. Yoon, D. Lee, S.J. Kang, J.-H. Jang. 2020. “Wire-Shaped 3D-Hybrid Supercapacitors as Substitutes for Batteries”. Nano-Micro Letters 12 (1): 28–41. DOI: 10.1007/s40820-019-0356-z.
  • [10] D.E. Katsoulis. 1998. “A Survey of Applications of Polyoxometalates”. Chemical Review 98 (1): 359–388. DOI: 10.1021/cr960398a.
  • [11] L. Adamczyk. 2017. “Development of Copper-Stabilized Conducting-Poly- mer/Polyoxometalate Hybrid Materials for Effective Electrochemical Charging”. Journal of Solid State Electrochemistry 21 (1): 211–222. DOI:10.1007/s10008-016-3357-6.
  • [12] Q. Li, M. Horn, Y. Wang, J. MacLeod, N. Motta, J. Liu. 2019. “A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials”. Materi- als 12 (5): 703. DOI: 10.3390/ma12050703.
  • [13] K. Giza. 2019. “The Effect of C45 Carbon Black-Ag Nanocomposite on the Electrochemical Properties of the Hydride Electrode”. Ochrona przed Korozją 62 (3): 92–95. DOI: 10.15199/40.2019.3.6.
  • [14] K. Giza. 2019. “Communication – A New Catalytic Application of H3PMo12O40 in the Performance of Hydride Electrode for Ni-MH Battery”. Journal of the Electrochemical Society 166: A1–A3. DOI: 10.1149/2.0751914jes.
  • [15] N.I. Gumerova, A. Rompel. 2018. “Synthesis, Structures and Applications of Electron-Rich Polyoxometalates”. Nature Reviews Chemistry 2: 112. DOI: 10.1038/s41570-018-0112.
  • [16] D. Pletcher. 2009. A First Course in Electrode Processes. Cambridge: The Royal Society of Chemistry.
  • [17] M. Kourasi. 2015. Heteropolyacids and Non-Carbon Electrode Materials for Fuel Cell and Battery Applications. Thesis. University of Southampton.
  • [18] Z. Lin, H. Shao, K. Xu, P.-L. Taberna, P. Simon. 2020. “MXenes as High-Rate Electrodes for Energy Storage”. Trends in Chemistry 2 (7): 654–664. DOI: 10.1016/j.trechm.2020.04.010.
  • [19] N.N. Greenwood, A. Earnshaw. 1997. Chemistry of the Elements. Oxford: Butterworth-Heinemann.
  • [20] R.I. Maksimovskaya. 2013. “Molybdophosphate Heteropoly Blues: Electron-Transfer Reactions in Aqueous Solutions as Studied by NMR”. Polyhedron 65: 54–59. DOI: 10.1016/j.poly.2013.08.014.
  • [21] V. Gehrke, G.K. Maron, R. da Silva Rodrigues, J.H. Alano, C.M.P. de Pereira, M.O. Orlandi, N.L.V. Carreño. 2021. “Facile Preparation of a Novel Biomass-Derived H3PO4 and Mn(NO3)2 Activated Carbon from Citrus Bergamia Peels for High-Performance Supercapacitors”. Materials Today Communications 26: 101779. DOI: 10.1016/j.mtcomm.2020.101779.
  • [22] X.-L. Su, J.-R. Chen, G.-P. Zheng, J.-H. Yang, X.-X. Guan, P. Liu, X.-Ch. Zheng. 2018. “Three-Dimensional Porous Activated Carbon Derived from Loofah Sponge Biomass for Supercapacitor Applications”. Applied Surface Science 436: 327–336. DOI: 10.1016/j.apsusc.2017.11.249.
  • [23] L.S. Kuang. 2017. Synthesis of Polyoxometalate Nanoarchitectures for Environmental Applications. Thesis. Nanyang Technological University.
  • [24] D. Bajuk-Bogdanović, I. Holclajtner-Antunović, M. Todorović, U.B. Mioč, J. Zakrzewska. 2008. “A Study of 12-Tungstosilicic and 12-Molybdophosphoric Acids in Solution”. Journal of the Serbian Chemical Society 73 (2): 197–209. DOI: 10.2298/JSC0802197B.
  • [25] M.J. Da Silva, M.G. Teixeira. 2017. “An Unexpected Behavior of H3PMo12O40 Heteropolyacid Catalyst on the Biphasic Hydrolysis of Vegetable Oils”. RSC Advances 7 (14): 8192–8199. DOI: 10.1039/C6RA27287H.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1c42417-531d-4dc1-88d7-4ef75de22f3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.