PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Design of dual flywheels with connecting rods for gamma-type Stirling engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A gamma-type Stirling engine, based on a dual flywheels’ concept, was designed and fabricated. Optimized design of the engine, with connecting rods, was introduced to achieve a steady state of the Stirling engine cycle. Performances of the engine were therefore presented in terms of piston motion, inertia force, angular speed, pressure-volume diagram and temperature difference. It was found that optimum length of 45 mm from the connecting rod was able to reach the maximum output mechanical speed of 738 rpm at the maximum inertia force of 0.5 N. The engine offered thermal efficiency of 46.15% and total output power of 1.21 W under the temperature difference of 267 K. In the future, this design is expected to prove useful for applications in portable generators.
Rocznik
Strony
919--924
Opis fizyczny
Bibliogr. 15 poz., rys., wykr., tab.
Twórcy
autor
  • Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
  • Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Bibliografia
  • [1] G. Walker, Stirling Engine, Clarendon Oxford, UK, 1980.
  • [2] K. Seanyot, K. Locharoenrat, and S. Lekchaum, “Design and fabrication of Gamma-type Stirling engine on parabolic dish of solar concentrator by a compression ratio method”, Applied Mechanics Materials 851, 383‒388 (2016).
  • [3] A.J. Martyr and M.A. Plint, Engine Testing Theory and Practice, 3rd Ed., Elsevier, USA, 2007.
  • [4] R.G. Budynas and J.K. Nisbett, Mechanical Engineering Design, 10th Ed., McGraw-Hill, USA, 2005.
  • [5] P. Puech and V. Tishkova, “Thermodynamic analysis of a Stirling engine including regenerator dead volume”, Renewable Energy 36, 872‒878 (2011).
  • [6] R. Gheith, F. Aloui, and S.B. Nasrallah, “Study of the regenerator constituting material influence on a gamma type Stirling engine”, Journal of Mechanical Science and Technology 26(4), 1251‒1255, (2012).
  • [7] R. Li, L. Grosu, and D. Queiros-Condé, “Losses effect on the performance of a Gamma type Stirling engine”, Energy Conversion and Management 114, 28‒37 (2016).
  • [8] B. Kongtragool and S. Wongwises, “Thermodynamic analysis of a Stirling engine including dead volumes of hot space, cold space and regenerator”, Renewable Energy 31(3), 345‒359 (2006).
  • [9] R. Beltran-Chacon, D. Leal-Chavez, D. Sauceda, M. Pellegrini-Cervantes, and M. Borunda, “Design and analysis of a dead volume control for a solar Stirling engine with induction generator”, Energy 93, 2593‒2603 (2015).
  • [10] H. Karabulut,“Dynamic analysis of a free piston stirling engine working with closed and open thermodynamic cycles”, Renewable Energy 36(6), 1704‒1709 (2011).
  • [11] F. Formosa and G. Despesse, “Analytical model for Stirling cycle machine design”, Energy Conversion Management 51(10), 1855‒1863 (2010).
  • [12] R.S. Khurmia and J.K. Gupta, Machine Design, Eurasia Publishing House, USA, 2005.
  • [13] M.J. Rider, Design, and Analysis of Mechanisms: A Planar Approach, Wiley, USA, 2015.
  • [14] S.A. Frank, “D’Alembert’s direct and inertial forces acting on populations: The price equation and the fundamental theorem of natural selection”, Entropy 17, 7087‒7100 (2015).
  • [15] G. Schmidt, “The theory of Lehman’s calorimetric machine”, Vereines Deutcher Ingenieure 15(1), 15‒20 (1871).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1bf2a17-de9c-46b4-b9ce-39edd9f75647
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.