PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microbiological and biosensor tests of dichlorodiphenyltrichloroethane toxicity as a water micropollutant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dichlorodiphenyltrichloroethane (DDT) is an organochloride pesticide with a global impact on agriculture. Despite the international ban on this pesticide in 2001, DDT is still illegally used for malaria control in some parts of the world, such as India and South Africa. The presence of DDT and its metabolites in waters, soil, and sediments continue to adversely affect living organisms. Understanding the toxic effects of DDT is crucial for global environmental health. The goal of this study was to investigate the toxicity of DDT in E. coli ATCC-25922, Sarcina spp., ATCC-35659, Enterobacter homaechei LBM ATCC-700323, Staphylococcus aureus ATCC-25923 and Candida albicans ATCC-1023. To confirm oxidative stress as a mechanism of toxicity, sodA promoter induction in the Escherichia coli sodA:luxCDABE biosensor strain and ROS (Radical Oxygen Species) synthesis in E. coli ATCC-25922 strain, across various DDT concentrations (10, 1, 0.1, and 0.01 mg/L) were measured. The results showed that DDT in the range of applied concentrations shows a toxic effect on bacteria/fungi. Analysis of sodA promoter induction and ROS synthesis values in E. coli strains showed an increase in these indicators following exposure to the tested DDT concentrations. The results confirmed the validity of the hypothesis that the molecular mechanism of DDT toxicity is by induction of oxidative stress. Therefore, the need to develop more effective methods of removing DDT from wastewater and water and reducing the transport of this pesticide into the environment is justified. Moreover, recent evidence has increasingly confirmed positive correlations between human exposure to DDT and the development of cancers.
Słowa kluczowe
Rocznik
Strony
363--376
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
  • Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Str, 15-351 Bialystok, Poland
  • Department of Agricultural and Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45E Str, 15-351 Bialystok, Poland
  • Department of Gastroenterology and Internal Medicine, Medicał University of Bialystok, M. Skłodowskiej-Curie 24A Str., 15-276 Bialystok, Poland
autor
  • Department of Environmental Engineering Technology, Bialystok University of Technology, Wiejska 45E Str., 15-351 Bialystok, Poland
  • Department of Applied Physics, School of Science, Aalto University, Otakaari 24, 02150 Espoo, Finland
  • Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Rakowiecka 36 Str., 02-532 Warsaw, Poland
  • Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Str, 15-351 Bialystok, Poland
  • Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Str, 15-351 Bialystok, Poland
Bibliografia
  • 1. Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N.S., & Xu J. (2016). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 12(3), 1864555. https://doi.org/10.1016/j.jhazmat.2016.04.045
  • 2. Arfin, S., Jha, N. K., Kesari, K. K., Ruokolainem, J., Roychoudhury, S., Rathi, B., & Kumar, D., (2021). Oxidative stress in cancer cell metabolism. Antioxidants (Basel), 10, 642. https://doi.org/10.3390/antiox10050642.
  • 3. Brody H., (2015). Colorectal cancer. Nature, 14, 521. https://doi.org/10.1038/521S1a.
  • 4. Buchser, R., Sweet, P., Anantharaman, A., & Contreras, L., (2023). RNAs as sensors of oxidative stress in bacteria. Annual Review of Chemical and Biomolecular Engineering, 14:265–81. https://doi.org/10.1146/annurev-chembioeng-101121-070250.
  • 5. Cohn, B.A., Wolff, M.S., Cirillo, P.M., & Sholtz, R.I., (2007). DDT and breast cancer in young women: new data on the significance of age at exposure. Environment Health Perspective, 115, (4), 1406–1414. https://doi.org/10.1289/ehp.10260.
  • 6. Cybulski, J., Witczak, A., & Pokorska-Niewiada, K., (2021). The effect of water and sewage treatment on reducing residues of selected organochlorine pesticides in Szczecin (Poland). Water Air and Soil Pollution, 232: 310. https://doi.org/10.1007/s11270-021-05261-6.
  • 7. Directive, 1998 Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption.
  • 8. Dz. U., item 1311 (Journal of laws), 2019. Regulation Minister for Maritime Economy and Inland Navigation of July 12, 2019 on substances that are particularly harmful to the aquatic environment.
  • 9. Dz. U., item 2294 (Journal of laws), 2017. Regulation of the Minister of Health of 7 December 2017 on the quality of water intended for human consumption. http://prawo.sejm. gov.pl/isap.nsf/ DocDetails.xsp?id=WDU2017000 2294
  • 10. Ebrahimi, S. O., Reiisi, S., & Shareef, S., (2020). miRNAs, oxidative stress, and cancer: A comprehensive and updated review. Journal of Cell Physiology, 235, 8812-8825. https://doi.org/10.1002/jcp.29724.
  • 11. Ebsa, G., Gizawa, B., Admassie, M., Degu, T., & Alemu, T., (2024). The role and mechanisms of microbes in dichlorodiphenyltrichloroethane (DDT) and its residues bioremediation. Biotechnology Reports, 42(6), e00835. https://doi.org/10.1016/j.btre.2024.e00835.
  • 12. Encarnacao, T., Pais, A.A., Campos, M.G., & Burrows, H.D., (2019). Endocrine disrupting chemicals: impact on human health, wildlife and the environment. Science Progress, 102, 3–42. https://doi.org/10.1177/0036850419826802.
  • 13. European Union, 2016. Monitoring-based exercise: second review of the priority substances list under the Water Framework Directive. https://circabc.europa.eu/sd/a/7fe29322-946a-4ead-b3b9-e3b156d0c318/monitoring.
  • 14. Fang, H., Zhang, H., Han, L., Mei, J., Ge, Q., Long, Z., & Yu, Y., (2018). Exploring bacterial communities and biodegradation genes in activated sludge from pesticide wastewater treatment plants via metagenomic analysis. Environmental Pollution, 243, 1206e1216. https://doi.org/10.1016/j.envpol.2018.09.080.
  • 15. Harada, T., Takeda, M., Kojima, S., & Tomiyama, N., (2016). Toxicity and carcinogenicity of dichlorodiphenyltrichloroethane (DDT). Toxicological Research, 1, 21-33. https://doi.org/10.5487/TR.2016.32.1.021.
  • 16. Ikwegbue, P. C., Masamba, P., Oyinloye, B. E., & Kappo, A. P., (2018). Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals, 11, (4), 1-18. https://doi.org/10.3390/ph11010002.
  • 17. Imlay, J. A., (2019). Where in the world do bacteria experience oxidative stress? Environmental Microbiology, 21, 521–530. https://doi.org/10.1111/1462-2920.14445.
  • 18. Jelic, M. D., Mandic, A. D., Maricic, S. M., & Srdjenovic, B. U., (2021). Oxidative stress and its role in cancer. Journal of Cancer Research and Therapy, 17, (8), 22-28. https://doi.org/10.4103/jcrt.JCRT_862_16.
  • 19. Jin, X., Song, L., Liu, X., Chen, M., & Li, Z., et al., (2014). Protective efficacy of vitamins C and E on p,p9-DDT-induced cytotoxicity via the ROS mediated mitochondrial pathway and NF-kB/FasL pathway. PLoS ONE 9: e113257. https://doi.org/10.1371/ journal.pone.0113257.
  • 20. Kumar, R., & Mukherji, S., (2018). Threat posed by persistent organochlorine pesticides and their mobility in the environment. Current Organic Chemistry, 22 (10), 954–972. https://doi.org/10.2174/1385272822666171227150106.
  • 21. Lal, R., & Saxena, D. M., (1982). Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms. Microbiological Reviews, 46, (7), 95-127. https://doi.org/10.1128/mr.46.1.95-127.1982.
  • 22. Lescano, M., Fussoni, N., Vidal, E., & Zalazar, C., (2022). Biodegradation of pesticide-contaminated wastewaters from a formulation plant employing a pilot scale biobed. Science of the Total Environment, 10, 150758. https://doi.org/10.1016/j.scitotenv.2021.150758.
  • 23. Liu, S., Fang, S., Xiang, Z., Chen, X., Song, Y., Chen, C., & Ouyang, G., (2021). Combined effect of microplastics and DDT on microbial growth: A bacteriological and metabolomics investigation in Escherichia coli. Journal of Hazardous Materials, 407, (4), 124849. https://doi.org/10.1016/j.jhazmat.2020.124849.
  • 24. Malagon, C. G., Gomez-Aburto, V. A., Hirmas-Olivares, A., Luarte, T., Berrojalbiz, N., & Dachs, J., (2023). Dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) levels in air and surface sea waters along the Antarctic Peninsula. Marine Pollution Bulletin, 197, 1156-1169. https://doi.org/10.1016/j.marpolbul.2023.115699
  • 25. Malusá, E., Tartanus, M, Danelski, W., Miszczak, A., Szustakowska, E., Kicińska, J., & Furmanczyk, E. M., (2020). Monitoring of DDT in agricultural soils under organic farming in Poland and the risk of crop contamination. Environmental Management, 66, (8), 916–929. https://doi.org/10.1007/s00267-020-01347-9.
  • 26. Mansouri, A., Cregut, M., Abbes, C., Durand, M. J., Landoulsi, A., & Thouand, G., (2017). The environmental issues of DDT pollution and bioremediation: a multidisciplinary review. Applied Biochemistry and Biotechnology, 181, 309-339. https://doi.org/10.1007/s12010-016-2214-5.
  • 27. Matejczyk, M., Kondzior, P., Ofman, P., Juszczuk-Kubiak, E., Świsłocka, R., Łaska, G., Wiater, J., & Lewandowski W., (2023). Atrazine toxicity in marine algae Chlorella vulgaris, in E. coli lux and gfp biosensor tests. Archives of Environmental Protection, 49,87-99. https://doi.org/10.24425/aep.2023.147331.
  • 28. Matich, E. K., Laryea, J. A., Seely, K. A., Stahr, S., & Su, L. J., (2021). Association between pesticide exposure and colorectal cancer risk and incidence: a systematic review. Ecotoxicology and Environmental Safety, 219: 1123-1127. https://doi.org/10.1016/j.ecoenv.2021.112327
  • 29. Megharaj, M., Kantachote, D., Singleton, I., Naidu, R., (2000). Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environmental Pollution, 109, (13), 35-42. https://doi.org/10.1016/s0269-7491(99)00231-6.
  • 30. Moraskie, M., Roshid, H., O’Connor, G., Dikici, E., Zingg, J.-M., Deo, S., & Daunert, S., (2021). Microbial whole-cell biosensors: current applications, challenges, and future perspectives. Biosensors and Bioelectronics, 191, 113359. https://doi.org/10.1016/j.bios.2021.113359.
  • 31. Ochoa-Rivero, J. M., Reyes-Fierro, A. V., Peralta-Pérez, M., Zavala-Díaz de la Serna, F. J., Ballinas-Casarrubias, L., Salmerón, I., Rubio-Arias, H., & Rocha-Gutiérrez, B. A., (2017). Levels and distribution of pollutants in the waters of an aquatic ecosystem in northern Mexico. International Journal of Environmental Reserch and Public Health, 14, (8), 456. https://doi.org/10.3390/ijerph14050456
  • 32. Peters, L. P., Carvalho, G., Martins, P. F., Dourado, M. N., Vilhena, M. B., Pileggi, M., & Azevedo, R. A., (2014). Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria. PLoS One, 9, e112271. https://doi.org/10.1371/journal.pone.0112271.
  • 33. Regulation (EU) 2017/625 of the European Parliament and of the Council Of 15march 2017 On official controls and other official activities performed to ensure the application of food and feed law, rules on animal health and welfare, plant health and plant protection products.
  • 34. Rizqi, H. D., Purnomo, A. S., & Ulfi, A., (2023). The effect of bacteria addition on DDT biodegradation by BROWN-ROT fungus Gloeophyllum trabeum. Heliyon, 9, (5), e18216. https://doi.org/10.1016/j.heliyon.2023.e18216.
  • 35. Rojas-Villacorta, W., Rojas-Flores, S., De La Cruz-Noriega, M., Chinchay Espino, H., Diaz, F., & Gallozzo Cardenas, M., (2022). Microbial biosensors for wastewater monitoring: mini-review. Processes, 10, 2-13. https://doi.org/10.3390/pr10102002.
  • 36. Russo, F., Ceci, A., Pinzari, F., Siciliano, A., Guida, M., Malusà, E., Tartanus, M., Miszczak, A., Maggi, O., & Persiani, A. M., (2019). Bioremediation of dichlorodiphenyltrichloroethane (DDT)-contaminated agricultural soils: potential of two autochthonous saprotrophic fungal strains. Applied Environmental Microbiology, 21, e01720-19. https://doi.org/10.1128/AEM.01720-19.
  • 37. Sazykin, I. S., & Sazykina, M. A., (2023). The role of oxidative stress in genome destabilization and adaptive evolution of bacteria. Gene 857, (9), 147170. https://doi.org/10.1016/j.gene.2023.147170.
  • 38. Szller, J., & Bill-Lula, I., (2021). Heat shock proteins in oxidative stress and ischemia/reperfusion injury and benefits from physical exercises: A review to the current knowledge. Oxidative medicine and Cellular Longevity, 31, 6678457. https://doi.org/10.1155/2021/6678457.
  • 39. Tao, S., Li, B. G., He, X. C., Liu, W. X., & Shi, Z., (2007). Spatial and temporal variations and possible sources of dichlorodiphenyltrichloroethane (DDT) and its metabolites in rivers in Tianjin, China. Chemosphere, 68, 10–16. https://doi.org/10.1016/j.chemosphere.2006.12.082.
  • 40. Tasselli, S., Marziali, L., Roscioli, C., & Guzzella, L., (2023). Legacy dichlorodiphenyltrichloroethane (DDT) pollution in a river ecosystem: sediment contamination and bioaccumulation in benthic invertebrates. Sustainability, 15, (6), 6493. https://doi.org/10.3390/su15086493.
  • 41. Toxicological Profile for DDT, DDE, and DDD. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2022. https://www.atsdr.cdc.gov/toxprofiles/tp35.pdf.
  • 42. World Health Organization. 2014a. WHO Recommended Insecticides for Indoor Residual Spraying against Malaria Vectors. Updated Nov. 17th, 2014.
  • 43. World Health Organization. 2014b. World Malaria Report. Geneva, Switzerland. http://www.who.int/malaria/publications/world_malaria_report_2014/en/.
  • 44. World Health Organization. 2015. World Malaria Report. Geneva, Switzerland. http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/.
  • 45. Wu, C.-W.; Biggar, K. K.; Zhang, J.; Tessier, S. N.; Pifferi, F.; Perret, M.; & Storey, K. B., (2015). Induction of antioxidant and heat shock protein responses during torpor in the gray mouse lemur, Microcebus murinus. Genomic and Proteomic Bioinformatics, 13, 119–126. https://doi.org/10.1016/j.gpb.2015.03.004.
  • 46. Zhu, Y., Elcin, E., Jiang, M., Li B., Wang, H., Zhang, X., & Wang, Z., (2022). Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Frontiers in Chemistry, 10, (3), 1018124. https://doi.org/10.3389/fchem.2022.1018124
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1bdb0c8-1bd3-4fa5-b638-456f19d21f07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.