PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study addresses the pressing issue of black carbon (BC) pollution in urban areas, focusing on two locations in the Philippines: Quezon City’s East Avenue (QCG, roadside urban environment) and Manila’s North Port. We found that organic aerosol particles (OA) made a greater contribution (80%) to total submicron particulate matter compared to inorganic aerosol (IA) (20%). The mean hourly average equivalent black carbon (eBC) mass concentration at the QCG site (35.97 ± 16.20 𝜇g/m3) was noticeably higher compared to the Port (10.27 ± 5.99 𝜇g/m3), consistent with trends in other Asian cities. Source apportionment analysis identified eBC related to transport emissions (eBCTR) as the predominant contributor to eBC, accounting for 86% at the Port and 80% at QCG. Diurnal patterns showed the highest eBCTR mass concentrations (47.69 ± 9.34 𝜇g/m3) during morning rush hours, which can be linked to light-duty vehicles. Late-night (10 pm–12 am) high concentrations (30.63 ± 8.45 𝜇g/m3) can be associated with heavy diesel trucks at the QCG site. Whereas at the Port site, hourly average higher eBCTR concentration (12.24 ± 3.65 𝜇g/m3) during morning hours (6 am–8 am) can be attributed to the traffic of heavy-duty trucks, trollers, diesel-powered cranes and ships. Compared to the QCG site, a lower eBC concentration at the Port site was favoured by the more open environment and higher wind speed, facilitating better pollutant dispersion. The mean hourly average concentrations of PM2.5 and PM10, measured using an Aerodynamic Particle Sizer, consistently exceeded the air quality standards set by the World Health Organization and the Philippine Clean Air Act at both sites. This study highlights the persisting BC pollution in developing regions and calls for scientifically based strategies to mitigate the air quality crisis.
Czasopismo
Rocznik
Strony
Art. no. 67109
Opis fizyczny
Bibliogr. 100 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Center for Physical Sciences and Technology (FTMC), Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
  • Institute of Epidemiology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
  • Center for Physical Sciences and Technology (FTMC), Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
  • Center for Physical Sciences and Technology (FTMC), Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
  • Center for Physical Sciences and Technology (FTMC), Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
  • Leibniz-Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
  • Leibniz-Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
  • Leibniz-Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
  • ARCHERS, CENSER, De La Salle University, 2401 Taft Ave., Malate, Philippines *corresponding author
  • ARCHERS, CENSER, De La Salle University, 2401 Taft Ave., Malate, Philippines
  • Center for Physical Sciences and Technology (FTMC), Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
  • Center for Physical Sciences and Technology (FTMC), Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
Bibliografia
  • 1. Alam, K., Blaschke, T., Madl, P., Mukhtar, A., Hussain, M., Trautmann, T., Rahman, S., 2011. Aerosol size distribution and mass concentration measurements in various cities of Pakistan. J. Environ. Monit. 13, 1944–1952. https://doi.org/10.1039/c1em10086f
  • 2. Alas, H.D., Müller, T., Birmili, W., Kecorius, S., Cambaliza, M.O., Simpas, J.B.B., Cayetano, M., Weinhold, K., Vallar, E., Galvez, M.C., Wiedensohler, A., 2018. Spatial characterization of black carbon mass concentration in the atmosphere of a southeast Asian megacity: An air quality case study for metro Manila, Philippines. Aerosol Air Qual. Res. 18, 2301-2317. https://doi.org/10.4209/aaqr.2017.08.0281
  • 3. Atabakhsh, S., Poulain, L., Chen, G., Canonaco, F., Prévôt, A.S.H., Pöhlker, M., Wiedensohler, A., Herrmann, H., 2023. A 1-year aerosol chemical speciation monitor (ACSM) source analysis of organic aerosol particle contributions from anthropogenic sources after long-range transport at the TROPOS research station Melpitz. Atmos. Chem. Phys. 23, 6963-6988. https://doi.org/10.5194/acp-23-6963-2023
  • 4. Bartley, D.L., Martinez, A.B., Baron, P.A., Secker, D.R., Hirst, E., 2000. Droplet distortion in accelerating flow. J. Aerosol Sci. 31, 1447-1460. https://doi.org/10.1016/S0021-8502(00)00042-2
  • 5. Bagtasa, G., Yuan, C.S., 2020. Influence of local meteorology on the chemical characteristics of fine particulates in Metropolitan Manila in the Philippines. Atmos. Pollut. Res. 11, 1359-1369. https://doi.org/10.1016/j.apr.2020.05.013
  • 6. Bilal, M., Ali, M.A., Nichol, J.E., Bleiweiss, M.P., de Leeuw, G., Mhawish, A., Shi, Y., Mazhar, U., Mehmood, T., Kim, J., Qiu, Z., Qin, W., Nazeer, M. 2022. AEROsol generic classification using a novel Satellite remote sensing Approach (AEROSA). Front. Environ. Sci. 10:981522. https://doi.org/10.3389/fenvs.2022.981522
  • 7. Bisht, D.S., Dumka, U.C., Kaskaoutis, D.G., Pipal, A.S., Srivastava, A.K., Soni, V.K., Attri, S.D., Sateesh, M., Tiwari, S. 2015. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing. Sci. Total Environ. 521-522, 431-445. https://doi.org/10.1016/j.scitotenv.2015.03.083
  • 8. Bodhaine, B.A., 1995. Aerosol absorption measurements at Barrow, Mauna Loa and the south pole. J. Geophys. Res. 100, 8967-8975. https://doi.org/10.1029/95JD00513
  • 9. Braun, R.A., Aghdam, M.A., Bañaga, P.A., Betito, G., Cambaliza, M.O., Cruz, M.T., Lorenzo, G.R., Macdonald, A.B., Simpas, J.B., 2020. Long-range aerosol transport and impacts on size-resolved aerosol composition in Metro Manila, Philippines. Atmos. Chem. Phys. 20, 2387-2405, https://doi.org/10.5194/acp-20-2387-2020
  • 10. Byčenkienė, S., Gill, T., Khan, A., Kalinauskaitė, A., Ulevicius, V., Plauškaitė, K., 2023. Estimation of Carbonaceous Aerosol Sources under Extremely Cold Weather Conditions in an Urban Environment. Atmosphere 14. https://doi.org/10.3390/atmos14020310
  • 11. Carslaw, D.C., 2005. Evidence of an increasing NO2/NOX emissions ratio from road traffic emissions. Atmos. Environ. 39, 4793-4802. https://doi.org/10.1016/j.atmosenv.2005.06.023
  • 12. Cadondon, J., Caido, N.G., Galvez, M.C., Rempillo, O., Esmeria Jr., J., Vallar, E., 2024. Black carbon and PM0.49 characterization in Manila North Harbour Port, Metro Manila, Philippines. Environ. Adv. 16, 100526. https://doi.org/10.1016/j.envadv.2024.100526
  • 13. Cappa, C.D., Onasch, T.B., Massoli, P., Worsnop, D.R., Bates, T.S., Cross, E.S., Davidovits, P., Hakala, J., Hayden, K.L., Jobson, B.T., Kolesar, K.R., Lack, D.A., Lerner, B.M., Li, S.-M., Mellon, D., Nuaaman, I., Olfert, J.S., Petäjä, T., Quinn, P.K., Song, C., Subramanian, R., Williams, E.J., Zaveri, R.A., 2012. Response to Comment on “Radiative Absorption Enhancements Due to the Mixing State of Atmo-spheric Black Carbon”. Science 339(6118), 393-c. https://doi.org/10.1126/science.1230260
  • 14. Cappa, C.D., Kolesar, K.R., Zhang, X., Atkinson, D.B., Pekour, M.S., Zaveri, R.A., Zelenyuk, A., Zhang, Q., 2016. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California. Atmos. Chem. Phys. 16, 6511-6535. https://doi.org/10.5194/acp-16-6511-2016
  • 15. Cesari, D., Merico, E., Dinoi, A., Marinoni, A., Bonasoni, P., Contini, D., 2018. Seasonal variability of carbonaceous aerosols in an urban background area in Southern Italy. Atmos. Res. 200, 97-108. https://doi.org/10.1016/j.atmosres.2017.10.004
  • 16. Chen, X., Zhang, Z., Engling, G., Zhang, R., Tao, J., Lin, M., Sang, X., Chan, C., Li, S., Li, Y., 2014. Characterization of fine particulate black carbon in Guangzhou, a megacity of south China. Atmos. Pollut. Res. 5, 361-370. https://doi.org/10.5094/APR.2014.042
  • 17. Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C.A., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C.J.L., Forouzanfar, M.H., 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6
  • 18. Collaud Coen, M., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H., Henzing, J.S., Jennings, S.G., Moerman, M., Petzold, A., Schmid, O., Baltensperger, U., 2010. Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmos. Meas. Tech. 3, 457-474. https://doi.org/10.5194/amt-3-457-2010
  • 19. Cruz, M.T., Simpas, J.B., Sorooshian, A., Betito, G., Cambaliza, M.O.L., Collado, J.T., Eloranta, E.W., Holz, R., Topacio, X.G.V., Del Socorro, J., Bagtasa, G., 2023. Impacts of regional wind circulations on aerosol pollution and planetary boundary layer structure in Metro Manila, Philippines. Atmos. Environ. 293, 119455. https://doi.org/10.1016/j.atmosenv.2022.119455
  • 20. Deng, J., Guo, H., Zhang, H., Zhu, J., Wang, X., Fu, P., 2020. Source apportionment of black carbon aerosols from light absorption observation and source-oriented modeling: An implication in a coastal city in China. Atmos. Chem. Phys. 20, 14419-14435. https://doi.org/10.5194/acp-20-14419-2020
  • 21. De Sa, S.S., Rizzo, L.V., Palm, B.B., Campuzano-Jost, P., Day, D.A., Yee, L.D., Wernis, R., Isaacman-VanWertz, G., Brito, J., Carbone, S., Liu, Y.J., Sedlacek, A., Springston, S., Goldstein, A.H., Barbosa, H.M.J., Alexander, M.L., Artaxo, P., Jimenez, J.L., Martin, S.T., 2019. Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmos. Chem. Phys., 19, 7973-8001. https://doi.org/10.5194/acp-19-7973-2019
  • 22. Donaldson, K., Gilmour, M.I., Macnee, W., 2000. Commentary Asthma and PM 10. Respir. Res. 1, 12-15.
  • 23. Draxler, R.R., Hess, G.D., 1998. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Aust. Meteorol. Mag. 47, 295-308.
  • 24. Dumka, U.C., Kaskaoutis, D.G., Tiwari, S., Safai, P.D., Attri, S.D., Soni, V.K., Singh, N., Mihalopoulos, N., 2018. Assessment of biomass burning and fossil fuel contribution to black carbon concentrations in Delhi during winter. Atmos.Environ. 194, 93-109. https://doi.org/10.1016/j.atmosenv.2018.09.033
  • 25. Dumka, U.C., Kaskaoutis, D.G., Devara, P.C.S., Kumar, R., Kumar, S., Tiwari, S., Gerasopoulos, E., Mihalopoulos, N., 2019. Year-long variability of the fossil fuel and wood burning black carbon components at a rural site in southern Delhi outskirts. Atmos. Res. 216, 11-25. https://doi.org/10.1016/j.atmosres.2018.09.016
  • 26. Dumka, U.C., Tiwari, S., Kaskaoutis, D.G., Soni, V.K., Safai, P.D., Attri, S.D., 2019. Aerosol and pollutant characteristics in Delhi during a winter research campaign. Environ. Sci. Pollut. Res. 26, 3771-3794. https://doi.org/10.1007/s11356-018-3885-y
  • 27. Fan, M., Zhang, W., Zhang, Y., Li, J., Fang, H., Al, F.A.N.E.T., 2023. Formation Mechanisms and Source Apportionments of Nitrate Aerosols in a Megacity of Eastern China Based On Multiple Isotope Observations. J. Geophys. Res.-Atmos. 1-14. https://doi.org/10.1029/2022JD038129
  • 28. Gani, S., Bhandari, S., Seraj, S., Wang, D.S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., Apte, J.S., 2019. Submicron aerosol composition in the world’s most polluted megacity: The Delhi Aerosol Supersite study. Atmos. Chem. Phys. 19, 6843-6859. https://doi.org/10.5194/acp-19-6843-2019
  • 29. Geng, X., Li, J., Zhong, G., Zhao, S., Tian, C., Zhang, Y.-L., Zhang, G., 2024. Ship Emissions as the Largest Contributor to Coastal Atmospheric Black Carbon at a Receptor Island in Southern China. Environ. Sci. Technol. Lett. 11, 723−729. https://doi.org/10.1021/acs.estlett.4c00362
  • 30. Grivas, G., Stavroulas, I., Liakakou, E., Kaskaoutis, D.G., Bougiatioti, A., Paraskevopoulou, D., Gerasopoulos, E., Mihalopoulos, N., 2019. Measuring the spatial variability of black carbon in Athens during wintertime. Air Quality, Atmos. Health 12, 1459-1470. https://doi.org/10.1007/s11869-019-00756-y
  • 31. Helin, A., Niemi, J. V., Virkkula, A., Pirjola, L., Teinilä, K., Backman, J., Aurela, M., Saarikoski, S., Rönkkö, T., Asmi, E., Timonen, H., 2018. Characteristics and source apportionment of black carbon in the Helsinki metropolitan area, Finland. Atmos. Environ. 190, 87-98. https://doi.org/10.1016/j.atmosenv.2018.07.022
  • 32. Hinds, W.C. 1982. Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles. John Wiley & Sons, Hoboken.
  • 33. Hinds, W.C., 1998. Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles. John Wiley & Sons, Hoboken.
  • 34. Kaminska, J.A., Turek, T., Van Poppel, M., Peters, J., Hofman, J., Kazak, J.K., 2023. Whether cycling around the city is in fact healthy in the light of air quality – Results of black carbon. J. Environ. Manage. 337, 117694. https://doi.org/10.1016/j.jenvman.2023.117694
  • 35. Kasthuriarachchi, N.Y., Rivellini, L.H., Adam, M.G., Lee, A.K.Y., 2020. Light absorbing properties of primary and secondary brown carbon in a tropical urban environment. Environ. Sci. Technol., 54, 10808-10819. https://doi.org/10.1021/acs.est.0c02414
  • 36. Kaskaoutis, D.G., Grivas, G., Stavroulas, I., Bougiatioti, A., Liakakou, E., Dumka, U.C., Gerasopoulos, E., Mihalopoulos, N., 2021. Apportionment of black and brown carbon spectral absorption sources in the urban environment of Athens, Greece, during winter. Sci. Total Environ. 801, 149739. https://doi.org/10.1016/j.scitotenv.2021.149739
  • 37. Kaskaoutis, D.G., Grivas, G., Stavroulas, I., Liakakou, E., Dumka, U.C., Gerasopoulos, E., Mihalopoulos, N., 2021. Effect of aerosol types from various sources at an urban location on spectral curvature of scattering and absorption coefficients. Atmospheric Research, 264, 105865. https://doi.org/10.1016/j.atmosres.2021.105865
  • 38. Kecorius, S., Madueño, L., Löndahl, J., Vallar, E., Cecilia, M., Idolor, L.F., Gonzaga-Cayetano, M., Müller, T., Birmili, W., Wiedensohler, A., 2019. Science of the Total Environment Respiratory tract deposition of inhaled roadside ultra fine refractory particles in a polluted megacity of South-East Asia. Sci. Total Environ. 663, 265-274. https://doi.org/10.1016/j.scitotenv.2019.01.338
  • 39. Kecorius, S., Madueño, L., Vallar, E., Alas, H., Betito, G., Birmili, W., Cambaliza, M.O., Catipay, G., Gonzaga-Cayetano, M., Galvez, M.C., Lorenzo, G., Müller, T., Simpas, J.B., Tamayo, E.G., Wiedensohler, A., 2017. Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines. Atmos. Environ. 170, 169-183. https://doi.org/10.1016/j.atmosenv.2017.09.037
  • 40. Kim, S.W., Cho, C., Rupakheti, M., 2021. Estimating contributions of black and brown carbon to solar absorption from aethalometer and AERONET measurements in the highly polluted Kathmandu Valley, Nepal. Atmos. Res., 247, 105164. https://doi.org/10.1016/j.atmosres.2020.105164
  • 41. Kumar, R.R., Soni, V.K., Jain, M.K., 2020. Evaluation of spatial and temporal heterogeneity of black carbon aerosol mass concentration over India using three-year measurements from IMD BC observation network. Sci. Total Environ. 723, 138060. https://doi.org/10.1016/j.scitotenv.2020.138060
  • 42. Lavanchy, V.M.H., Gäggeler, H.W., Schotterer, U., Schwikowski, M., Baltensperger, U., 1999. Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti, Switzerland). J. Geophys. Res. Atmos. 104, 21227-21236. https://doi.org/10.1029/1999JD900408
  • 43. Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A., 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367-371. https://doi.org/10.1038/nature15371
  • 44. Liu, P.S.K., Deng, R., Smith, K.A., Williams, L.R., Jayne, J.T., Canagaratna, M.R., Moore, K., Onasch, T.B., Worsnop, D.R., Deshler, T., 2007. Transmission efficiency of an aerodynamic focusing lens system: Comparison of model calculations and laboratory measurements for the aerodyne aerosol mass spectrometer. Aerosol Sci. Technol. 41, 721-733. https://doi.org/10.1080/02786820701422278
  • 45. Liu, C., Chung, C.E., Yin, Y., Schnaiter, M., 2018. The absorption Ångström exponent of black carbon: From numerical aspects. Atmos. Chem. Phys. 18, 6259-6273. https://doi.org/10.5194/acp-18-6259-2018
  • 46. Li, Z., Tan, H., Zheng, J., Liu, L., Qin, Y., Wang, N., Li, F., Li, Y., Cai, M., Ma, Y., Chan, C.K., 2019. Light absorption properties and potential sources of particulate brown carbon in the Pearl River Delta region of China. Atmos. Chem. Phys., 19, 11669-11685. https://doi.org/10.5194/acp-19-11669-2019
  • 47. Liakakou, E., Kaskaoutis, D.G., Grivas, G., Stavroulas, I., Tsagkaraki, M., Paraskevopoulou, D., Bougiatioti, A., Dumka, U.C., Gerasopoulos, E., Mihalopoulos, N. 2020. Long-term brown carbon spectral characteristics in a Mediterranean city (Athens). Sci. Total Environ. 708, 135019. https://doi.org/10.1016/j.scitotenv.2019.135019
  • 48. Madueño, L., Kecorius, S., Birmili, W., Müller, T., Simpas, J., Vallar, E., Galvez, M.C., Cayetano, M., Wiedensohler, A., 2019. Aerosol particle and black carbon emission factors of vehicular fleet in Manila, Philippines. Atmosphere (Basel). 10. https://doi.org/10.3390/atmos10100603
  • 49. Madueño, L., Kecorius, S., Löndahl, J., Schnelle-Kreis, J., Wiedensohler, A., Pöhlker, M., 2022. A novel in-situ method to determine the respiratory tract deposition of carbonaceous particles reveals dangers of public commuting in highly polluted megacity. Part. Fibre Toxicol. 19. https://doi.org/10.1186/s12989-022-00501-x
  • 50. Merico, E., Dinoi, A., Contini, D., 2019. Development of an integrated modelling-measurement system for nearreal-time estimates of harbour activity impact to atmospheric pollution in coastal cities. Transp. Res. Pt. D 73, 108-119. https://doi.org/10.1016/j.trd.2019.06.009
  • 51. Middlebrook, A.M., Bahreini, R., Jimenez, J.L., Canagaratna, M.R., 2012. Evaluation of composition-dependent collection efficiencies for the Aerodyne aerosol mass spectrometer using field data. Aerosol Sci. Technol. 46, 258-271. https://doi.org/10.1080/02786826.2011.620041
  • 52. Miller, R.M., Rauber, R.M., Di Girolamo, L., Rilloraza, M., Fu, D., Mcfarquhar, G.M., Nesbitt, S.W., Ziemba, L.D., Woods, S., Thornhill, K.L., 2023. Influence of natural and anthropogenic aerosols on cloud base droplet size distributions in clouds over the South China Sea and West Pacific. Atmos. Chem. Phys. 23, 8959-8977. https://doi.org/10.5194/acp-23-8959-2023
  • 53. Minderytė, A., Pauraite, J., Dudoitis, V., Plauškaitė, K., Kilikevičius, A., Matijošius, J., Rimkus, A., Kilikevičienė, K., Vainorius, D., Byčenkienė, S., 2022. Carbonaceous aerosol source apportionment and assessment of transport-related pollution. Atmos. Environ. 279. https://doi.org/10.1016/j.atmosenv.2022.119043
  • 54. Myllyvirta, L., Suarez, I., 2020. Air quality and health impacts of coal-fired power in the Philippines. Nie, D., Qiu, Z., Wang, X., Liu, Z., 2022. Characterizing the source apportionment of black carbon and ultrafine particles near urban roads in Xi’an, China. Environ. Res. 215, 114209. https://doi.org/10.1016/j.envres.2022.114209
  • 55. Oanh, N.T., Upadhyay, N., Zhuang, Y.H., Hao, Z.P., Murthy, D.V.S., Lestari, P., Villarin, J.T., Chengchua, K., Co, H.X., Dung, N.T., Lindgren, E.S., 2006. Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources. Atmos. Environ. 40, 3367-3380. https://doi.org/10.1016/j.atmosenv.2006.01.050
  • 56. Pabroa, P.C.B., Racho, J.M.D., Jagonoy, A.M., Valdez, J.D.G., Bautista VII, A.T., Yee, J.R., Pineda, R., Manlapaz, J., Atanacio, A.J., Coronel, I.C. V., Salvador, C.M.G., Cohen, D.D., 2022. Characterization, source apportionment and associated health risk assessment of respirable air particulates in Metro Manila, Philippines. Atmos. Pollut. Res. 13, 101379. https://doi.org/10.1016/j.apr.2022.101379
  • 57. Park, S., Yu, G.H., 2019. Absorption properties and size distribution of aerosol particles during the fall season at an urban site of Gwangju, Korea. Environ. Eng. Res. 24, 159-172. https://doi.org/10.4491/eer.2018.166
  • 58. Pani, S.K., Lin, N.-H., Griffith, S.M., Chantara, S., Lee, C.-T., Thepnuan, D., Tsai, Y.I., 2021. Brown carbon light absorption over an urban environment in northern peninsular Southeast Asia. Environ. Pollut. 276, 116735. https://doi.org/10.1016/j.envpol.2021.116735
  • 59. Patel, K., Bhandari, S., Gani, S., Campmier, M.J., Kumar, P., Habib, G., Apte, J., Hildebrandt Ruiz, L., 2021. Sources and Dynamics of Submicron Aerosol during the Autumn Onset of the Air Pollution Season in Delhi, India. ACS Earth Sp. Chem. 5, 118-128. https://doi.org/10.1021/acsearthspacechem.0c00340
  • 60. Park, K., Kittelson, D.B., McMurry, P.H., 2004. Structural properties of diesel exhaust particles measured by Transmission Electron Microscopy (TEM): Relationships to particle mass and mobility. Aerosol Sci. Technol. 38, 881-889. https://doi.org/10.1080/027868290505189
  • 61. Park, S.S., Hansen, A.D.A., Cho, S.Y., 2010. Measurement of real-time black carbon for investigating spot loading effects of Aethalometer data. Atmos. Environ. 44, 1449-1455. https://doi.org/10.1016/j.atmosenv.2010.01.025
  • 62. Pauraite, J., Mainelis, G., Kecorius, S., Minderytė, A., Dudoitis, V., Garbarienė, I., Plauškaitė, K., Ovadnevaite, J., Byčenkienė, S., 2021. Office indoor PM and BC level in Lithuania: The role of a long-range smoke transport event. Atmosphere (Basel) 12. https://doi.org/10.3390/atmos12081047
  • 63. Peters, T.M., Ott, D., O’Shaughnessy, P.T., 2006. Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles. Ann. Occup. Hyg. 50, 843-850. https://doi.org/10.1093/annhyg/mel067
  • 64. Pfeifer, S., Müller, T., Weinhold, K., Zikova, N., Dos Santos, S.M., Marinoni, A., Bischof, O.F., Kykal, C., Ries, L., Meinhardt, F., Aalto, P., Mihalopoulos, N., Wiedensohler, A., 2016. Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): Uncertainties in particle sizing and number size distribution. Atmos. Meas. Tech. 9, 1545-1551. https://doi.org/10.5194/amt-9-1545-2016
  • 65. Philippine Land Transportation Office Annual Report, 2023. Philippine Land Transportation Office Annual Rep., Philippine Gov. https://lto.gov.ph/wp-content/uploads/2023/11/Annual_Reports-2023.pdf, (Last access: 17 February 2024).
  • 66. Philippine Population Density, 2015. Philippine Population Density, (based on the 2015 Census of Population), Philippine Gov. https://psa.gov.ph/system/files/phcd/202212/Cities%2520and%2520Municipalities%2520Population%2520Projections_2015CBPP_Phils.pdf, (Last access: 17 February 2024).
  • 67. Philippines, Environmental Management Bureau, 2018. National Air Quality Status Report 2016–2018. Dep. Environ. Nat. Res., Environ.l Manage. Bureau, Philippines. https://air.emb.gov.ph/wp-content/uploads/2021/01/National-Air-Quality-Status-Report-2008-2015_With-message-from-D.pdf
  • 68. Plauškaitė, K., Špirkauskaitė, N., Byčenkienė, S., Kecorius, S., Jasinevičienė, D., Petelski, T., Zielinski, T., Andriejauskienė, J., Barisevičiūtė, R., Garbaras, A., Makuch, P., Dudoitis, V., Ulevicius, V., 2017. Characterization of aerosol particles over the southern and South-Eastern Baltic Sea. Mar. Chem. 190, 13-27. https://doi.org/10.1016/j.marchem.2017.01.003
  • 69. Qin, Y.M., Bo Tan, H., Li, Y.J., Jie Li, Z., Schurman, M.I., Liu, L., Wu, C., Chan, C.K., 2018. Chemical characteristics of brown carbon in atmospheric particles at a suburban site near Guangzhou, China. Atmos. Chem. Phys. 18, 16409-16418. https://doi.org/10.5194/acp-18-16409-2018
  • 70. Quang, T.N., Hue, N.T., Dat, M. Van, Tran, L.K., Phi, T.H., Morawska, L., Thai, P.K., 2021. Motorcyclists have much higher exposure to black carbon compared to other commuters in traffic of Hanoi, Vietnam. Atmos. Environ. 245, 118029. https://doi.org/10.1016/j.atmosenv.2020.118029
  • 71. Republic of the Philippines, 1999. Philippine Clean Air Act of 1999: An Act Providing for a Comprehensive Air Pollution Control Policy and for Other Purposes. 11th Congr. Philipp. Metro Manila. June 23, 1999, 1-29.
  • 72. Salvador, C.M.G., Yee, J.R. dR., Coronel, I.C. V., Bautista VII, A.T., Sugcang, R.J., Lavapie, M.A.M., Capangpangan, R.Y., Pabroa, P.C.B., 2022. Variability and Source Characterization of Regional PM of Two Urban Areas Dominated by Biomass Burning and Anthropogenic Emission. Aerosol Air Qual. Res. 22, 220026. https://doi.org/10.4209/aaqr.220026
  • 73. Salam, A., Hossain, T., Siddique, M.N.A., Shafiqul Alam, A.M., 2008. Characteristics of atmospheric trace gases, particulate matter, and heavy metal pollution in Dhaka, Bangladesh. Air Qual. Atmos. Heal. 1, 101-109. https://doi.org/10.1007/s11869-008-0017-8
  • 74. Sandradewi, J., Prévôt, A.S.H., Weingartner, E., Schmidhauser, R., Gysel, M., Baltensperger, U., 2008. A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmos. Environ. 42, 101-112. https://doi.org/10.1016/j.atmosenv.2007.09.034
  • 75. Salcedo, D., Onasch, T.B., Dzepina, K., Canagaratna, M.R., Zhang, Q., Huffmann, J.A., DeCarlo, P.F., Jayne, J.T., Mortimer, P., Worsnop, D.R., Kolb, C.E., Johnson, K.S., Zuberi, B., Marr, L.C., Volkamer, R., Molina, L.T., Molina, M.J., Cardenas, B., Bernabé, R.M., Márquez, C., Gaffney, J.S., Marley, N.A., Laskin, A., Shutthanandan, V., Xie, Y., Brune, W., Lesher, R., Shirley, T., Jimenez, J.L., 2006. Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: Results from the CENICA Supersite. Atmos. Chem. Phys. 6, 925-946. https://doi.org/10.5194/acp-6-925-2006
  • 76. Schober, P., Schwarte, L.A., 2018. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 126, 1763-1768. https://doi.org/10.1213/ANE.0000000000002864
  • 77. Shakya, K.M., Peltier, R.E., Shrestha, H., Byanju, R.M., 2017. Measurements of TSP, PM10, PM2.5, BC, and PM chemical composition from an urban residential location in Nepal. Atmos. Pollut. Res. 8, 1123-1131. https://doi.org/10.1016/j.apr.2017.05.002
  • 78. Stavroulas, I., Grivas, G., Liakakou, E., Kalkavouras, P., Bougiatioti, A., Kaskaoutis, D.G., Lianou, M., Papoutsidaki, K., Tsagkaraki, M., Zarmpas, P., Gerasopoulos, E., Mihalopoulos, N., 2021. Online Chemical Characterization and Sources of Submicron Aerosol in the Major Mediterranean Port City of Piraeus, Greece. Atmosphere 12, 1686. https://doi.org/10.3390/atmos12121686
  • 79. Sun, Y.L., Zhang, Q., Schwab, J.J., Demerjian, K.L., Chen, W.N., Bae, M.S., Hung, H.M., Hogrefe, O., Frank, B., Rattigan, O. V., Lin, Y.C., 2011. Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass spectrometer. Atmos. Chem. Phys. 11, 1581-1602. https://doi.org/10.5194/acp-11-1581-2011
  • 80. Talukdar, S., Tripathi, S.N., Lalchandani, V., Rupakheti, M., Bhowmik, H.S., Shukla, A.K., Murari, V., Sahu, R., Jain, V., Tripathi, N., Dave, J., Rastogi, N., Sahu, L., 2021. Air pollution in new delhi during late winter: An overview of a group of campaign studies focusing on composition and sources. Atmosphere (Basel). 12, 1-22. https://doi.org/10.3390/atmos12111432
  • 81. Tõnisson, L., Kunz, Y., Kecorius, S., Madueño, L., Tamayo, E.G., Casanova, D.M., Zhao, Q., Schikowski, T., Hornidge, A.K., Wiedensohler, A., Macke, A., 2020. From transfer to knowledge co-production: A transdisciplinary research approach to reduce black carbon emissions in metro manila, Philippines. Sustain. 12, 1-19. https://doi.org/10.3390/su122310043
  • 82. Ulevičius, V., Byčenkienė, S., Špirkauskaitė, N., Kecorius, S., 2010. Biomass burning impact on black carbon aerosol mass concentration at a coastal site: Case studies. Lithuanian J. Phys. 50, 335-344. https://doi.org/10.3952/lithjphys.50304
  • 83. Tun, M.M., Juchelkova, D., Win, M.M., Thu, A.M., Puchor, T., 2019. Biomass energy: An overview of biomass sources, energy potential, and management in Southeast Asian countries. Resources 8. https://doi.org/10.3390/resources8020081
  • 84. Ulevičius, V., Byčenkienė, S., Špirkauskaitė, N., Kecorius, S., 2010. Biomass burning impact on black carbon aerosol mass concentration at a coastal site: Case studies. Lithuanian J. Phys. 50, 335-344. https://doi.org/10.3952/lithjphys.50304
  • 85. Virkkula, A., Mäkelä, T., Hillamo, R., Yli-Tuomi, T., Hirsikko, A., Hämeri, K., Koponen, I.K., 2007. A Simple Procedure for Correcting Loading Effects of Aethalometer Data. J. Air Waste Manag. Assoc. 57(10), 1214-1222. https://doi.org/10.3155/1047-3289.57.10.1214
  • 86. Wang, J., Nie, W., Cheng, Y., Shen, Y., Chi, X., Wang, J., Huang, X., Xie, Y., Sun, P., Xu, Z., Qi, X., Su, H., Ding, A., 2018. Light absorption of brown carbon in eastern China based on 3-year multi-wavelength aerosol optical property observations and an improved absorption Ångström exponent segregation method. Atmos. Chem. Phys. 18, 9061-9074. https://doi.org/10.5194/acp-18-9061-2018
  • 87. Wang, X., Heald, C.L., Sedlacek, A.J., de Sá, S.S., Martin, S.T., Alexander, M.L., Watson, T.B., Aiken, A.C., Springston, S.R., Artaxo, P. 2016. Deriving brown carbon from multiwavelength absorption measurements: method and application to AERONET and Aethalometer observations. Atmos. Chem. Phys. 16, 12733-12752. https://doi.org/10.5194/acp-16-12733-2016
  • 88. Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U., 2003. Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 34, 1445-1463. https://doi.org/10.1016/S0021-8502(03)00359-8
  • 89. Werden, B.S., Giordano, M.R., Goetz, J.D., Islam, M.R., Bhave, P. V., Puppala, S.P., Rupakheti, M., Saikawa, E., Panday, A.K., Yokelson, R.J., Stone, E.A., DeCarlo, P.F., 2022. Premonsoon submicron aerosol composition and source contribution in the Kathmandu Valley, Nepal. Environ. Sci. Atmos. 2, 978-999. https://doi.org/10.1039/d2ea00008c
  • 90. WHO, 2021. WHO global air quality guidelines. Coast. Estuar. Process. 2021, 1-360. Williams, L., Aerodyne Team, 2021. AMS/ACSM Calibration Protocols. ARI AMS Users Meeting, Virtual, January 19, 2021.
  • 91. Wmo/Igac, 2012. Impacts of Megacities on Air Pollution and Climate, Global Atmosphere Watch (GAW) Rep. No. 205.,
  • 92. WMO/IGAC. Xie, C., Xu, W., Wang, J., Wang, Q., Liu, D., Tang, G., Chen, P., Du, W., Zhao, J., Zhang, Y., Zhou, W., Han, T., Bian, Q., Li, J., Fu, P., Wang, Z., Ge, X., Allan, J., Coe, H., Sun, Y., 2019.
  • 93. Vertical characterization of aerosol optical properties and brown carbon in winter in urban Beijing. Atmos. Chem. Phys. 19, 165-179. https://doi.org/10.5194/acp-19-165-2019
  • 94. Yang, M., Howell, S.G., Zhuang, J., Huebert, B.J., 2009. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China. Atmos. Chem. Phys. 9, 2035–2050. https://doi.org/10.5194/acp-9-2035-2009
  • 95. Yu, J., Zhu, A., Liu, M., Dong, J., Chen, R., Tian, T., Liu, T., Ma, L., Ruan, Y., 2023. Association between air pollution and cardiovascular disease hospitalizations in Lanzhou City, 2013–2020: A time series analysis. GeoHealth 8, e2022GH000780. https://doi.org/10.1029/2022GH000780
  • 96. Zhou, S., Collier, S., Jaffe, D.A., Briggs, N.L., Hee, J., Iii, A.J.S., Kleinman, L., Onasch, T.B., Zhang, Q., 2017. Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. Atmos. Chem. Phys. 17, 2477-2493. https://doi.org/10.5194/acp-17-2477-2017
  • 97. Zhang, Y., Albinet, A., Petit, J.E., Jacob, V., Chevrier, F., Gille, G., Pontet, S., Chretien, E., Dominik-Segue, M., Levigoureux, G., Mocnik, G., Gros, V., Jaffrezo, J.L., Favez, O., 2020. Substantial brown carbon emissions from wintertime residential wood burning over France. Sci. Total Environ. 743, 140752. https://doi.org/10.1016/j.scitotenv.2020.140752
  • 98. Zhao, Z., Cao, J., Chow, J.C., Watson, J.G., Chen, L.-W., Wang, X., Wang, Q., Tian, J., Shen, Z., Zhu, C., Liu, S., Tao, J., Ye, Z., Zhang, T., Zhou, J., 2019. Multi-wavelength light absorption of black and brown carbon at a high-altitude site on the Southeastern margin of the Tibetan Plateau, China. Atmos. Environ. 212, 54-64. https://doi.org/10.1016/j.atmosenv.2019.05.035
  • 99. Zuo, P., Huang, Y., Bi, J., Wang, W., Li, W., Lu, D., Zhang, Q., Liu, Q., Jiang, G., 2023. Non-traditional stable isotopic analysis for source tracing of atmospheric particulate matter. Trend. Anal. Chem. 158, 116866. https://doi.org/10.1016/j.trac.2022.116866
  • 100. Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Mocnik, G., Hüglin, C., Baltensperger, U., Szidat, S., Prévôt, A.S.H., 2017. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmos. Chem. Phys. 17, 4229-4249. https://doi.org/10.5194/acp-17-4229-2017
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1bd9ad3-6047-4b2a-be32-ae8156d608b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.