PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polypropylene matrix composite with charcoal filler

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the article is to present the thermal, electrical and mechanical properties of the produced polymer composites with a filler in the form of charcoal powder. Design/methodology/approach: The tests were carried out on samples of pure polypropylene (PP) and polymer composites, the matrix of which is polypropylene (PP), and the filler was charcoal powder with a volume fraction of 10%, 20%, 30%, 40% and 50%. The tested polymer composites in the form of granules were produced by extrusion, and then standardised test profiles were made by injection moulding. Findings: The hardness of the tested composites was determined by the Shore D method, the grain size distribution of the filler used was determined using the laser method and its thermal stability was tested using the TGA thermogravimetric analysis. The volume and surface resistivity were also determined and the density was determined. It was found that the charcoal powder used as a filler is characterised by high thermal stability - up to 600°C - and with an increase in its volume share in the polymer matrix, the hardness and density of the produced composites increases. Practical implications: The tested composites can be used as structural composites for complex elements requiring high hardness and strength. Originality/value: The research results indicate the possibility of using charcoal as a filler in polymer matrix, which, due to its low production cost, may be an alternative to expensive carbon fillers.
Rocznik
Strony
60--66
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Engineering and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Department of Materials Engineering and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] G. Sionkowski, H. Kaczmarek, Polymers with silver nanoparticles - selected systems, preparation, properties and applications, Polimery 55/7-8 (2010) 545-551 (in Polish).
  • [2] M. Kacperski, Polymer nanocomposites, Kompozyty 3/7 (2003) 225-232 (in Polish).
  • [3] E. Matei, M. Rapa, A.A. Andras, A.M. Predescu, C. Pantilimon, A. Pica, C. Predescu, Recycled Polypropylene improved with thermoplastic elastomers, International Journal of Polymer Science 2017 (2017) 7525923. DOI:https://doi.org/10.1155/2017/7525923
  • [4] J. Korol, A. Hejna, D. Burchart-Korol, B. Chmielnicki, K. Wypiór, Water Footprint Assessment of Selected Polymers, Polymer Blends, Composites, and Biocomposites for Industrial Application, Polymers 11/11 (2019) 1791. DOI: https://doi.org/10.3390/polym11111791
  • [5] A. Boczkowska, J. Kapuściński, Z. Lindermann, Composites, OWPW, Warsaw, 2003 (in Polish).
  • [6] D.W. Van Krevelen, Coal-topology, physics, chemistry constitution, Third Edition, Elsevier, Amsterdam, London, NY, Tokyo, 1993.
  • [7] J. Stabik, M. Chomiak, Ł. Suchoń, A. Dybowska, K. Mrowiec, Chosen manufactured methods of polymeric graded materials with electrical and magnetic properties gradation, Archives of Materials Science and Engineering 54/2 (2012) 218-226.
  • [8] H. Yui, G. Wu, H. Sano, M. Sumita, K. Kino, Morphology and electrical conductivity of injection-molded polypropylene/carbon black composites with addition of high-density polyethylene, Polymer 47/10 (2006) 3599-3608. DOI: https://doi.org/10.1016/j.polymer.2006.03.064
  • [9] J. Huang, C. Mao, Y. Zhu, W. Jiang, X. Yang, Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds,Carbon 73 (2014) 267-274.DOI: https://doi.org/10.1016/j.carbon.2014.02.063
  • [10] H. Nazarpour-Farrad, K. Rad-Moghadam, F. Shirini, M.H. Beheshty, G.H. Asghari, Reinforcement of epoxy resin/carbon fiber composites by carboxylated carbon nanotubes: a dynamic mechanical study, Polimery 63/4 (2018) 254-263. DOI: http://dx.doi.org/dx.doi.org/10.14314/polimery.2018.4.1
  • [11] E. Soliman, U. Kandil, M.R. Taha, Improved strength and toughness of carbon woven fabric composites with functionalized MWCNTs, Materials 7/6 (2014) 4640-4657. DOI: https://doi.org/10.3390/ma7064640
  • [12] F.O. Abast, R.U. Aabass, Thermo-mechanical behavior of epoxy composite reinforced by carbon and Kevlar fiber, MATEC Web of Conferences 225 (2018) 01022. DOI: https://doi.org/10.1051/matecconf/201822501022
  • [13] H. Liu, D. Bai, H. Bai, Q. Zhang, Q. Fu, Manipulating the filler network structure and properties of Polylactide/carbon black nanocomposites with the aid of stereocomplex crystallites, The Journal of Physical Chemistry C 122/8 (2018) 4232-4240. DOI: https://doi.org/10.1021/acs.jpcc.8b00417
  • [14] C. Shepherd, E. Hadzifejzovic, F. Shkal, K. Jurkschat, J. Moghal, E. M. Parker, M. Sawangphruk, D.R. Slocombe, J.S. Foord, M.G. Moloney, New routes to functionalize carbon black for polypropylene nanocomposites, Langmuir 32/31 (2016) 7917-7928. DOI: https://doi.org/10.1021/acs.langmuir.6b02013
  • [15] H. Jintoku, Y. Matsuzawa, M. Yoshida, Light-Induced Fabrication of Patterned Conductive Nanocarbon Films for Flexible Electrode, ACS Applied NanoMaterials 3/9 (2020) 8866-8874. DOI: https://doi.org/10.1021/acsanm.0c01635
  • [16] P.-Ch. Ma, M.-Y. Liu, H. Zhang, S.-Qi Wang, R. Wang, K. Wang, B.-Z. Tang, S.-H. Hong, K.-W. Paik, J.-K. Kim, Enhanced electrical conductivity of nano-composites containing hybrid fillers of carbon nano-tubes and carbon black, Applied Materials and Interfaces 1/5 (2009) 1090-1096. DOI:https://doi.org/10.1021/am9000503
  • [17] C.A. Sierra-Chi, H. Aguilar-Bolados, M.A. López-Manchado, R. Verdejo, J.V. Cauich-Rodríguez, F. Avilés, Flexural electromechanical properties of multilayer graphene sheet/carbon nanotube/vinyl ester hybrid nanocomposites, Composites Science and Technology 194 (2020)108164. DOI: https://doi.org/10.1016/j.compscitech.2020.108164
  • [18] W. Zhang, A.A. Dehghani-Sanij, R.S. Blackburn, Carbon based conductive polymer composites, Journal of Materials Science 42 (2007) 3408-3418. DOI: https://doi.org/10.1007/s10853-007-1688-5
  • [19] M. Polok-Rubiniec, A. Włodarczyk-Fligier, B. Chmielnicki, The properties of a polypropylene matrix composite with anthracite filler, Archives of Metallurgy and Materials 66/1 (2021) 305-3011. DOI: https://doi.org/10.24425/amm.2021.134
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1bb142d-97af-48ac-850d-11f7ccb1a9b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.