PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ecological Manipulation of Psidium guajava to Facilitate Secondary Forest Succession in Tropical Forests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Psidium guajava L. has been documented as an exotic invasive species in many parts of the world, but little is known about its interactions with native woody species during secondary forest succession in tropical forests. Its invasion and interactions with native species in different stages of secondary forest succession were assessed in Kakamega Rainforest in western Kenya. The study covered three forest blocks each with five different forest types, namely: open fields, young secondary forest, middle-aged secondary forest, old-growth secondary forest and disturbed primary forest, which served as the control. Open fields that were subjected to frequent clearing to control the spread of Psidium guajava remained under a thicket of the species two decades later. On the other hand, open fields where Psidium guajava was ignored, either due to lack of resources or sheer neglect, transformed into young secondary forest stands within a decade. The transformation increased woody species richness from 2.0±0.0 to 5.0±0.0 ha-1, and the Shannon diversity index from 0.30±0.33 to 1.10±0.01. It reduced the dominance of Psidium guajava from 80.5±22.7 to 62.26±0.84% and changed the canopy structure. The change in canopy structure led to the mortality of Psidium guajava stems in the sub-canopy and understory layer, which significantly reduced its stem density from 1,111±313 to 639.4±45 stems ha-1. The pattern was repeated in middle-aged secondary forest stands with woody species richness increasing to 26.0±8.2 ha-1, and Shannon index to 2.72±0.32. Psidium guajava’s dominance and stem density decreased further to 30.44% and 400.57 stems ha-1, respectively, due to mortality attributed to shading by native tree species. In the old-growth secondary forest, only snags of Psidium guajava were recorded. The species was not represented in the disturbed primary forest. The results indicate that Psidium guajava facilitates secondary forest succession by allowing shade-tolerant native tree species to recruit and grow in its shade. It is thereafter eliminated when the native species close the forest canopy. The species can be ecologically manipulated to facilitate post-disturbance forest regrowth and thereafter removing it when the forest canopy begins to close.
Rocznik
Strony
210--221
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
  • Lake Victoria Basin Eco-region Research Programme, Kenya Forestry Research Institute, P. O. Box 5199-40108, Kisumu, Kenya
  • Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210-40601, Bondo, Kenya
autor
  • Rift Valley Eco-region Research Programme, Kenya Forestry Research Institute, P. O. Box 382-20203, Londiani, Kenya
  • Rift Valley Eco-region Research Programme, Kenya Forestry Research Institute, P. O. Box 382-20203, Londiani, Kenya
  • Department of Biological and Environmental Sciences, Kibabii University, P. O. Box 1699-50200, Bungoma, Kenya
Bibliografia
  • 1. Adhiambo, R., Muyekho, F., Creed, I.F., Enanga, E., & Shivoga, W., 2019. Managing the invasion of guava trees to enhance carbon storage in tropical forests. Forest Ecology and Management, 432, 623–630. https://doi.org/10.1016/j.foreco.2018.10.010.
  • 2. Berens, D.G., Farwig, N., Schaab, G., & BöhningGaese, K., 2008. Exotic guavas are foci of forest regeneration in Kenyan farmland. Biotropica, 40, 104–112. https://doi.org/10.1111/j.1744-7429.2007.00338.x.
  • 3. Brown, K.A., Scatena, F.N., & Gurevitch, J., 2006. Effects of an invasive tree on community structure and diversity in a tropical forest in Puerto Rico. Forest Ecology and Management, 226, 145–152. https://doi.org/10.1016/j.foreco.2006.01.031.
  • 4. Chapla, T.E., & Campos, J.B., 2010. Allelopathic evidence in exotic guava (Psidium guajava L.). Brazilian Archives of Biology and Technology, 53, 1359–1362. https://doi.org/10.1590/S1516-89132010000600012.
  • 5. Chiveu, J.C., Mueller, M., Krutovsky, K.V., Kehlenbeck, K., Pawelzik, E., & Naumann, M., 2019. Genetic diversity of common guava in Kenya: An underutilized naturalized fruit species. Fruits, 74, 236–248. https://doi.org/10.17660/th2019/74.5.4.
  • 6. Coe, R., 2008. Designing ecological and biodiversity sampling strategies. Working Paper no. 66. World Agroforestry Centre. Nairobi, 33 p.
  • 7. Davis, M.A., Chew, M.K., Hobbs, R.J., Lugo, A.E., Ewel, J.J., Vermeij, G.J., Brown, J.H., Rosenzweig, M.L., Gardener, M.R., Carroll, S.P., Thompson, K., Pickett, S.T.A., Stromberg, J.C., Tredici, P. Del, Suding, K.N., Ehrenfeld, J.G., Philip Grime, J., Mascaro, J., & Briggs, J.C., 2011. Don’t judge species on their origins. Nature, 474(7350), 153–154. https://doi.org/10.1038/474153a.
  • 8. Dawson, W., Mndolwa, A.S., Burslem, D.F.R.P., & Hulme, P.E., 2008. Assessing the risks of plant invasions arising from collections in tropical botanical gardens. Biodiversity and Conservation, 17, 1979–1995. https://doi.org/10.1007/s10531-008-9345-0.
  • 9. DeWalt, S.J., Maliakal, S.K., & Denslow, J.S., 2003. Changes in vegetation structure and composition along a tropical forest chronosequence: Implications for wildlife. Forest Ecology and Management, 182, 139–151. https://doi.org/10.1016/S0378-1127(03)00029-X.
  • 10. Farwig, N., Sajita, N., & Böhning-Gaese, K., 2009. High seedling recruitment of indigenous tree species in forest plantations in Kakamega Forest, western Kenya. Forest Ecology and Management, 257, 143–150. https://doi.org/10.1016/j.foreco.2008.08.022.
  • 11. Fashing, P.J., & Gathua, J.M., 2004. Spatial variability in the vegetation structure and composition of an East African rain forest. African Journal of Ecology, 42, 189–197. https://doi.org/10.1111/j.1365-2028.2004.00512.x.
  • 12. Fischer, E., Rembold, K., Althof, A., Obholzer, J., Malombe, I., Mwachala, G., Onyango, J.C., Dumbo, B., & Theisen, I., 2010. Annotated Checklist of the Vascular Plants of Kakamega Forest, Western Province, Kenya. Journal of East African Natural History, 99, 129–226. https://doi.org/10.2982/028.099.0205.
  • 13. Fine, P.V.A., 2002. The invasibility of tropical forests by exotic plants. Journal of Tropical Ecology, 18, 687–705. https://doi.org/10.1017/S0266467402002456.
  • 14. Foxcroft, L.C., Richardson, D.M., Rejmánek, M., & Pyšek, P., 2010. Alien plant invasions in tropical and sub-tropical savannas: Patterns, processes and prospects. Biological Invasions, 12, 3913–3933. https://doi.org/10.1007/s10530-010-9823-7.
  • 15. Gregoire T.G. and Valentine, H.T., 2007. Sampling strategies for natural resources and the environment. Chapman and Hall, London. 474 p.
  • 16. Global Invasive Species Database, 2015. Species profile: Psidium guajava. Downloaded from http://www.iucngisd.org/gisd/species.php?sc=211 on 10-02-2020.
  • 17. Glenday, J., 2006. Carbon storage and emissions offset potential in an East African tropical rainforest. Forest Ecology and Management, 235, 72–83. https://doi.org/10.1016/j.foreco.2006.08.014.
  • 18. Guariguata, M.R., Chazdon, R.L., Denslow, J.S., Dupuy, J.M., & Anderson, L., 1997. Structure and floristics of secondary and old-growth forest stands in lowland Costa Rica. Plant Ecology, 132, 107–120. https://doi.org/10.1023/A:1009726421352.
  • 19. Gupta, G., Chahal, J., & Arora, D., 2011. Psidium guajava Linn.: Current research and future prospects. Journal of Pharmacy Research, 4, 42–46.
  • 20. Junaedi, D.I., McCarthy, M.A., Guillera-Arroita, G., Catford, J.A., & Burgman, M.A., 2018. Traits influence detection of exotic plant species in tropical forests. PLoS ONE, 13, 1–15. https://doi.org/10.1371/journal.pone.0202254.
  • 21. Kawawa, R.C.A., Obiri, J.F., Muyekho F.N., Omayio, D.O., Agevi, H., Mwaura, A., Obiet, L., Kimutai, D.K., and Sifuna A.W., 2016. Allellopathic potential of invasive Psidium guajava L., against selected native tree species in Kakamega Tropical Forest, Western Kenya. IOSR Journal of Pharmacy and Biological Sciences, 11, 80–86. https://doi.org/10.9790/3008-1105028086.
  • 22. Kenya Forest Service, 2010.) Kakamega forest compartment register: Sheet 10. Kenya Forest Service, Nairobi.
  • 23. Kenya National Bureau of Statistics, 2019. Kenya population and housing census, volume I: population by county and sub-county. KNBS, Nairobi. http://www.knbs.or.ke ISBN: 978-9966-102-09-6.
  • 24. Kidaha, L.M., Alakonya, A.E., & Nyende, A.B., 2015. Morphological Characters of Guava landraces in Western and Coastal Kenya. American Journal of Experimental Agriculture, 9, 1–11. https://doi.org/10.9734/AJEA/2015/12674.
  • 25. Kituyi, B., Otuoma, J., Wabuyele, E., & Musila, W., 2018. Interaction of bischofia javanica and its effect on species diversity and structural composition of secondary and plantation forests in a Kenya rainforest. Journal of Tropical Forest Science, 30, 393–401. https://doi.org/10.26525/jtfs2018.30.3.393401.
  • 26. Kuehl, R.O., 2000. Design of experiments: Statistical principles of research design and analysis. Second edition, Duxbury Press, USA.ISBN-10: 0534368344.
  • 27. Lü, X.T., Yin, J.X., & Tang, J.W., 2010. Structure, tree species diversity and composition of tropical seasonal rainforests in xishuangbanna, south-west china. Journal of Tropical Forest Science, 22, 260–270.
  • 28. Lung, M., 2009. An analysis of fragmentation effects in Kakamega Forest in relation to reforestation benefits. Working Paper, May 2009, Eco2librium LLC Project, Kakamega, Kenya.
  • 29. Magurran, A., 2004. Measuring biological diversity. Blackwell Publishing, Oxford, UK.
  • 30. Naseer, S., Hussain, S., Naeem, N., Pervaiz, M., & Rahman, M., 2018. The phytochemistry and medicinal value of Psidium guajava (guava). Clinical Phytoscience, 4, 32. https://doi.org/10.1186/s40816-018-0093-8.
  • 31. Nath, C.D., Pélissier, R., & Garcia, C., 2010. Comparative efficiency and accuracy of variable area transects versus square plots for sampling tree diversity and density. Agroforestry Systems, 79, 223–236. https://doi.org/10.1007/s10457-009-9255-5.
  • 32. Newton, A.C., 2007. Forest ecology and conservation: a handbook of techniques. Oxford University Press, Oxford, UK.
  • 33. Onwuegbuzie, A.J., & Leech, N.L., 2007. Sampling Designs in Qualitative Research: Making the Sampling Process More Public. The Qualitative Report, 12, 238-254. https://doi.org/10.1007/s11135-006-9000-3.
  • 34. Ojewole, J.A.O., Awe, E.O., & Chiwororo, W.D.H., 2008. Antidiarrhoeal activity of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract in rodents. Journal of Smooth Muscle Research, 44, 195–207. https://doi.org/10.1540/jsmr.44.195.
  • 35. Omayio, D.G., Abong, G.O., Okoth, M.W., Gachuiri, C.K., & Ombe, A.W.M., 2019. Current Status of Guava ( Psidium Guajava L .) Production , Utilization , Processing and Preservation in Kenya : A Review. Current Agriculture Research Journal, 7, 318-331. http://dx.doi.org/10.12944/CARJ.7.3.07.
  • 36. Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Simons, A., 2009. Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Nairobi. http://www.worldagroforestry.org/af/treedb/.
  • 37. Otuoma, J., Anyango, B., Ouma, G., Okeyo, D., Muturi, G.M., & Oindo, B., 2016. Determinants of aboveground carbon offset additionality in plantation forests in a moist tropical forest in western Kenya. Forest Ecology and Management, 365, 61–68. https://doi.org/10.1016/j.foreco.2016.01.028.
  • 38. Otuoma, J., Ouma, G. Okeyo, D. & Anyango, B., 2014. Species composition and stand structure of secondary and plantation forests in a Kenyan rainforest. Journal of Horticulture and Forestry, 6, 38–49. https://doi.org/10.5897/jhf2014.0343.
  • 39. Fine, P.V.A., 2002. The invasibility of tropical forests by exotic plants. Journal of Tropical Ecology, 18, 687-705. doi:10.1017/S0266467402002456.
  • 40. Peña-Claros, M., & De Boo, H., 2002. The effect of forest successional stage on seed removal of tropical rain forest tree species. Journal of Tropical Ecology, 18, 261–274. https://doi.org/10.1017/S0266467402002171.
  • 41. Pereira, F.M., Usman, M., Mayer, N.A., Nachtigal, J.C., Ranny, O., Maphanga, M., & Willemse, S., 2016. Advances in guava propagation. Revista Brasileira de Fruticultura. 39, 39-43. https://doi.org/10.1590/0100-29452017358.
  • 42. Pimentel, D., Lach, L., Zuniga, R., & Morrison, D., 2000. Environmental and Economic Costs of Nonindigenous Species in the United States. BioScience, 50, 53-65. https://doi.org/10.1641/0006-3568(2000)050[0053:ea econ]2.3.co;2.
  • 43. Rejmánek, M., Richardson, D.M., & Pyšek, P., 2013. Plant invasions and invasibility of plant communities. In: Vegetation Ecology: Second Edition (eds E. van der Maarel and J. Franklin), pp 387–424. John Wiley & Sons.
  • 44. Rejmánek, M., 1996. Species richness and resistance to invasions. In: Diversity and Processes in Tropical Forest Ecosystems. (eds G.H. Orians, R. Dirzo & J.H. Cushman), pp. 153–72. SpringerVerlag, Berlin.
  • 45. Ricciardi, A., & Ryan, R., 2018. Invasive species denialism revisited : response to Sagoff. Biological Invasions, 20, 2731–2738. https://doi.org/10.1007/s10530-018-1753-9.
  • 46. Sagoff, M., 2007. Are non-native species harmful? In: Aliens among us. Conservation Magazine, April–June 2007 (vol 8, no 2). https://doi.org/10.1111/j.1526-4629.2007.t01-4-.x.
  • 47. Sagoff, M., 2005. Do non-Native species threaten the natural environment? Journal of Agricultural and Environmental Ethics, 18, 215–236. https://doi.org/10.1007/s10806-005-1500-y.
  • 48. Sakai, A.K., Allendorf, F.W., Holt, J.S., Lodge, M., Molofsky, J., With, K.A., Cabin, R.J., Cohen, J.E., Norman, C., Mccauley, D.E., Neil, P.O., Parker, M., Thompson, J.N., & Weller, S.G., 2001. The population biology of invasive species. Annual Review of Ecology and Systematics, 32, 305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037.
  • 49. Simberloff, D., 2015. Non-native invasive species and novel ecosystems. F1000Prime Reports, 7, 1–7. https://doi.org/10.12703/P7-47.
  • 50. Simberloff, D., 2011. Non-natives: 141 scientists object. Nature, 475(7354), 36–36. doi:10.1038/475036a.
  • 51. Simberloff, D., 2014. Biological invasions: What’s worth fighting and what can be won? Ecological Engineering, 65, 112–121. https://doi.org/10.1016/j.ecoleng.2013.08.004.
  • 52. Sokal, R.R. & Rohlf, F.J., 2012. Biometry: the principles and practice of statistics in biological research, Fourth edition. Freeman, New York.
  • 53. Tsingalia, H.M. & Kassily, F.N., 2009. The Origins Kakamega Forest Grasslands: A Critical Review. Journal of Human Ecology, 27, 129–135. https://doi.org/10.1080/09709274.2009.11906201.
  • 54. Urquía, D., Gutierrez, B., Pozo, G., Pozo, M.J., Espín, A., & de Lourdes, T.M., 2019. Psidium guajava in the Galapagos Islands: Population genetics and history of an invasive species. PLoS ONE, 14, 1–21. https://doi.org/10.1371/journal.pone.0203737.
  • 55. Walker B. & Steffen W., 1997. An overview of the implications of global change for natural and managed terrestrial ecosystems. Conservation Ecology, 1(2), 2. Available from the Internet. URL: http://www.consecol.org/vol1/iss2/art2/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1b3d97a-3df1-4c6f-8eb8-fd3baf731cf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.