PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Microstructural Evolution in HMX Based Plastic-bonded Explosive During Heating and Cooling Process: an in situ Small-angle Scattering Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal damage in octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) based plastic-bonded explosive (PBX) was investigated using in situ small-angle neutron and X-ray scattering techniques. The microstructural evolution was quantitatively characterized by the model fitting parameters of total interfacial surface area (Sv) and void volume distribution. The Sv of HMX-PBX decreased markedly above 100 °C, indicating the movement of binder into the voids. After subsequent cooling to room temperature, the scattering intensity increased significantly with increasing storage time, and a new population of voids with average diameter of 20 nm was observed, accompanied by the gradual phase transition of HMX from δ- to β-phase. The experimental results implied that serious damage within the HMX-PBX was developed during storage after heating.
Słowa kluczowe
Rocznik
Strony
916--926
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
autor
  • Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China
autor
  • Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
autor
  • Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
autor
  • Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
autor
  • Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
autor
  • Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
autor
  • Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China
autor
  • Institute of Shanghai Apply Physics, Chinese Academy of Science, Shanghai 201800, China
Bibliografia
  • [1] Hsu P.C., DeHaven M., McClelland M., Tarver C., Chidester S., Maienschein J., Characterization of Damaged Materials, 13th Int. Detonation Symposium, Norfolk, Virginia, July 23-28, 2006, 617.
  • [2] Asay B.W., Henson B.F., Smilowitz L.B., Dickson P., On the Difference in Impact Sensitivity of Beta and Delta HMX, J. Energ. Mater., 2003, 21, 223-235.
  • [3] Tringe J., Kercher J., Springer H., Glascoe E., Levie H., Hsu P., Willey T., Molitoris J., Numerical and Experimental Study of Thermal Explosions in LX-10 and PBX 9501: Influence of Thermal Damage on Deflagration Processes, J. Appl. Phys., 2013, 114, 043504.
  • [4] Menikoff R., Sewell T.D., Constituent Properties of HMX Needed for Mesoscale Simulations, Combust. Theor. Model., 2002, 6, 103-125.
  • [5] Xue C., Sun J., Kang B., Liu Y., Liu X., Song G., Xue Q., The β‐δ‐Phase Transition and Thermal Expansion of Octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine, Propellants Explos. Pyrotech., 2010, 35, 333-338.
  • [6] Stoltz C.A., Mason B.P., Hooper J., Neutron Scattering Study of Internal Void Structure in RDX, J. Appl. Phys., 2010, 107, 103527.
  • [7] Mang J.T., Hjelm R.P., Small‐Angle Neutron Scattering and Contrast Variation Measurement of the Interfacial Surface Area in PBX 9501 as a Function of Pressing Intensity, Propellants Explos. Pyrotech., 2011, 36, 439-445.
  • [8] Mang J.T., Hjelm R.P., Fractal Networks of Inter‐Granular Voids in Pressed TATB, Propellants Explos. Pyrotech., 2013, 38, 831-840.
  • [9] Mang J., Skidmore C., Son S., Hjelm R., Rieker T., An Optical Microscopy and Small-angle Scattering Study of Porosity in Thermally Treated PBX 9501, AIP Conf. Proc., 2002, 620, 833-836.
  • [10] Peterson P.D., Mang J.T., Asay B.W., Quantitative Analysis of Damage in an Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazonic-based Composite Explosive Subjected to a Linear Thermal Gradient, J. Appl. Phys., 2005, 97, 093507.
  • [11] Yan G.Y., Tian Q., Liu J.H., Chen B., Sun G.A., Huang M., Li X.H., Small-angle X-ray Analysis of the Effect of Grain Size on the Thermal Damage of Octahydro- 1,3,5,7-tetranitro-1,3,5,7-tetrazocine-based Plastic-bounded Expolsives, Chin. Phys. B., 2014, 23, 076101.
  • [12] Tian Q., Yan G.Y., Sun G.A., Huang C., Xie L., Chen B., Huang M., Li H.Z., Liu X., Wang J., Thermally Induced Damage in Hexanitrohexaazaisowurtzitane, Cent. Eur. J. Energ. Mater., 2013, 10(3), 359-369.
  • [13] Saw C.K., Tarver C.M., Binder/HMX Interaction in PBX9501 at Elevated Temperatures, AIP Conf. Proc., 2004, 706, 1029-1032. [14] Willey T.M., Lauderbach L., Gagliardi F., van Buuren T., Glascoe E.A., Tringe J.W., Lee J.R., Springer H.K., Ilavsky J., Mesoscale Evolution of Voids and Microstructural Changes in HMX-based Explosives During Heating Through the β→δ Phase Transition, J. Appl. Phys., 2015, 118, 055901.
  • [15] Jiang M., Yang X., Xu H., Zhao Z., Ding H., Shanghai Synchrotron Radiation Facility, Chin. Sci. Bull., 2009, 54, 4171-4181.
  • [16] Huang Ch., Xia Q., Yan G., Sun G., Chen B., A New Package: MySAS for Small Angle Scattering Data Analysis, Nuc. Sci. Tech., 2010, 21, 325-329.
  • [17] Glatter O., Kratky O., Small Angle X-ray Scattering, Academic Press London, 1982, Vol. 66.
  • [18] Ilavsky J., Jemian P.R., Irena: Tool Suite for Modeling and Analysis of Small-angle Scattering, J. Appl. Crystallogr., 2009, 42, 347-353.
  • [19] Koester L., Rauch H., Seymann E., Neutron Scattering Lengths: a Survey of Experimental Data and Methods, At. Data Nucl. Data Tables, 1991, 49, 65.
  • [20] Levitas V.I., Henson B.F., Smilowitz L.B., Asay B.W., Solid-solid Phase Transformation via Virtual Melting Significantly Below the Melting Temperature, Phys. Rev. Lett., 2004, 92, 235702.
  • [21] Levitas V.I., Henson B.F., Smilowitz L.B., Zerkle D.K., Asay B.W., Coupled Phase Transformation, Chemical Decomposition, Deformation in Plastic-bonded Explosive: Models, J. Appl. Phys., 2007, 102, 113502.
  • [22] Li J.L., Wang X.C., Sun J., Aging Effect of the Crystallization Behavior of VDF/CTFE, Eng. Plast. Appl. (in Chinese), 2007, 4, 015.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1adde03-4495-421c-8148-efcc7d7805ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.