PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of fatty acid/dodecylamine mixtures and their application in steam coal reverse flotation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A series of surfactant mixtures which consist of DAH (dodecylamine hydrochloride) and fatty acids (FAD) were made in this study. The characteristics of these fatty acids/DAH mixtures, including surface tension, critical micelle concentration (CMC) and adsorption onto coal were investigated. The reverse flotation results with these fatty acids/DAH mixtures (FAD) and DAH were compared with each other. Experimental results showed that the fatty acids/ DAH mixtures have lower CMC and γcmc than DAH. The adsorption test indicated that more amine molecules would adsorb preferentially onto the bubbles surface in FAD solutions than that in DAH solutions. Reverse flotation results showed that about 50% surfactant dosage was saved under the same froth product yield. Only 28% froth product yield was obtained in the presence of 1.66 kg/Mg DAH. However, when 0.83 kg/Mg hexadecanoic acid/DAH mixture (C16D) surfactant was used, the froth product yield reached 29%. Dodecanoic acid/DAH mixture (C12D) surfactant a showed better performance with a high mineral matter recovery similar to that with tetradecanoic acid/DAH mixture (C14D) and higher combustible recovery than with C14D and C16D.
Rocznik
Strony
303--316
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
autor
  • College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
Bibliografia
  • ANGADI, S.I., SURESH, N., 2005. A kinetic model for the prediction of water reporting to the froth products in batch flotation. Trans. Inst. Min. Metall. Sect. C, 114, 225–232.
  • ANGADI, S.I., JEON, HO-SEOK, NIKKAM, S., 2012. Experimental analysis of solids and water flow to the coal flotation froths. Int. J. Miner. Process, 110–111, 62–70.
  • BAKER, A.F., MILLER, K.J., DUERBRAUCK, A.W., 1973. Desulphurization of froth flotation. Proceedings 6th Int. Coal Prep. Congress, Paris, March, 1973.
  • DESAI, T.R., DIXIT, S.G., 1996. Interaction and viscous properties of aqueous solutions of mixed cationic and nonionic surfactants, J. Colloid Interface Sci, 177, 471–477.
  • DING, K., LASKOWSKI, J.S., 2006a. Coal reverse flotation. Part I: separation of a mixture of subbituminous coal and gangue minerals. Miner. Eng. 19, 72–78.
  • DING, K., LASKOWSKI, J.S., 2006b. Coal reverse flotation. Part II: cleaning of a subbituminous coal. Miner. Eng. 19, 79–86.
  • DIGRE, M., SANDVIK, K.L., 1968. Adsorption of Amine on Quartz Through Bubble Interaction Transactions IMM, sec. C, 77, 61–64.
  • FANG X., ZHAO S., MAO S., YU J., DU Y., 2003. Mixed micelles of cationic–nonionic surfactants: NMR self-diffusion studies of Triton X-100 and cetyltrimethylammonium bromide in aqueous solution, Colloid Polym. Sci. 281, 455–460.
  • HERRINGTON, K.J., KALER., MILLER, D.D., ZASADZINSKI, J.A., CHIRUVOLU, S., 1993. Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS). Journal of Physical Chemistry, 97 (51), 13792–13802
  • LIN, C.H., 1982. Characterisation of Pyrites in Reverse Flotation Products. (PhD Thesis) University of Utah
  • LI M, RHARBI Y, HUANG X, WINNIK M., 2000. Small variations in the composition and properties of triton X-100. J Colloid Interface Sci 230:135–139
  • MILLER, K.J., 1973. Flotation of Pyrite From Coal: Pilot Plant Study. (USBM, RI, 7822).
  • MILLER, K.J., 1975. Coal–pyrite flotation. Trans. AIME, 258, 30.
  • MILLER, K.J., 1978. Desulphurization of Various Midwestern Coals by Flotation (USBM, RI,8262).
  • MILLER, J.D., LIU, C.L., CHANG, S.S., 1984. Co-adsorption phenomena in the separation of pyrite from coal by reverse flotation. Coal Prep, 1, 21.
  • MILLER, K.J., DEURBROUCK, A.W., 1982. Froth Flotation to Desulphurize Coal in “Physical Cleaning of Coal”. Marcel Dekker, New York, 255.
  • OZTURK, F.P., TEMEL, H.A., 2013. Reverse flotation in Muş-Elmakaya lignite beneficiation. Energy Sources Part A, 35 (8), 695–705.
  • PATIL, D.P., LASKOWSKI, J.S., 2008. Development of zero conditioning procedure for coal reverse flotation. Miner. Eng, 21, 373–379.
  • PAWLIK, M., LASKOWSKI, J.S., 2003a. Coal Reverse Flotation—Part I. Adsorption of Dodecyltrimethyl Ammonium Bromide and Humic Acids onto Coal and Silica. Coal Prep, 23, 91–112.
  • PAWLIK, M., LASKOWSKI, J.S., 2003b. Coal reverse flotation—part II. Batch flotation tests. Coal Prep, 23, 113–127.
  • PENFOLD, J., STAPLES, E., CUMMINS, P., THOMAS, R., SIMISTER, E., LU, J., 1996. Adsorption of mixed cationic–non-ionic surfactants at the air/water interface. J. Chem. Soc. Faraday Trans, 92, 1773–1779.
  • PENFOLD, J., STAPLES, E., TUCKER, I., THOMPSON, L., 1997. Adsorption of mixed cationic and nonionic surfactants at the hydrophilic silicon surface from aqueous solution: Studied by specular neutron reflection. Langmuir, 13, 6638–6643.
  • QIN, Z.H., TAN, R., 2006. Spectrophotometric method for determination of cationic surfactants with eosin Y and its reaction mechanism. Chin. J. Anal. Lab, 25 (10), 110–114.
  • RUBINGH, D., JONES, T., 1982. Mechanism of detergency in systems containing cationic and nonionic surfactants, Ind. Eng. Chem. Prod. Res. Dev. 21, 176–182.
  • SOMASUNDARAN, P., 1968. The Relationship Between Adsorption at Different Interfaces and Flotation Behavior. Transactions SME, 241, 105–108.
  • STONESTREET, P., FRANZIDIS, J.P., 1988. Reverse flotation of coal—a novel way for the beneficiation of coal fines. Miner. Eng. 1, 343–349.
  • STONESTREET, P., FRANZIDIS, J.P., 1989. Development of the reverse coal flotation process: depression of coal in the concentrates. Miner. Eng. 2, 393–402.
  • STONESTREET, P., FRANZIDIS, J.P., 1992. Development of the reverse coal flotation process: application to column flotation. Miner. Eng. 5, 1041–1051.
  • VORA S., GEORGE A., DESAI H., BAHADUR P., 1999. Mixed micelles of some anionic–anionic, cationic–cationic, and ionic–nonionic surfactants in aqueous media, J. Surfactant Deterg, 2, 213–221.
  • XUEFEN, Z., GUIWU, L., XIAOMING, W., HONG Y., 2009. Molecular dynamics investigation into the adsorption of oil–water–surfactant mixture on quartz, Appl. Surf. Sci. 255, 6493–6498
  • XIAO, J.X., SIVARS, U., TJERNELD, F., 2000. Phase behavior and protein partitioning in aqueous two-phase systems of cationic–anionic surfactant mixtures, J. Chromatogr. B Biomed. Sci. Appl. 743, 327–338.
  • XIA, W., YANG, J., 2013a. Reverse flotation of Taixi oxidized coal. Energy Fuels, 27 (12), 7324–7329.
  • ZHANG, H., LIU, J., CAO, Y., WANG, Y., 2013. Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride. Powder Technol. 246, 658–663
  • ZHANG, HAIJUN., LIU, QINGXIA., 2015. Lignite cleaning in Nacl solutions by the reverse flotation technique. Physicochem. Probl. Miner. Process. 51 (2), 695-706
  • ZHANG, W.J., TANG, X.Y., 2014. Flotation of lignite pretreated by sorbitan monooleate. Physicochem. Probl. Miner. Process. 50 (2), 759–766.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1ab3489-565e-4fc6-9edf-cd3bef3b46c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.