PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Test Reactions To Study Efficiency Of Mixing

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effects of mixing on the course of fast chemical reactions are relatively well understood, especially in homogeneous systems. This enables to design and operate chemical reactors with the goal to achieve a high yield of a desired product and use systems of complex reactions as a chemical probe (chemical test reactions) to identify progress of mixing and quality of mixture. Recently, a number of studies have focused on the application of chemical test reactions to identify energy efficiency of mixing, being a convenient way of comparing mixers and reactors in terms of their mixing efficiency. This review offers a presentation of chemical test reactions available in the literature and methods of applications of test reactions to identify the energy efficiency of mixing. Also methods to assess the extent of micromixing by measuring product distribution or segregation index, and to determine the time constant for mixing are presented for single phase homogeneous systems and two-phase liquid-liquid systems.
Rocznik
Strony
171--208
Opis fizyczny
Bibliogr. 94 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Atiemo-Obeng V.A., Calabrese R.V., 2004. Rotor–stator mixing devices, In: Paul E.L., Atiemo-Obeng V.A., Kresta S.M. (Eds.), Handbook of Industrial Mixing, Science and Practice. Wiley Hoboken, New Jersey, 479–505.
  • 2. Aubin J., Ferrando M., Jiricny V., 2010. Current methods for characterising mixing and flow in microchannels. Chem. Eng. Sci., 65, 2065-2093. DOI: 10.1016/j.ces.2009.12.001.
  • 3. Baccar N., Kieffer R., Charcosset C., 2009. Characterization of mixing in a hollow fiber membrane contactor by the iodide–iodate method: Numerical simulations and experiments. Chem. Eng. J., 148, 517–524. DOI: 10.1016/j.cej.2008.12.020.
  • 4. Bałdyga J., Bourne J.R., 1984. Mixing and fast chemical reaction –VIII. Initial deformation of material elements in isotropic, homogeneous turbulence. Chem. Eng. Sci., 39, 329-334. DOI: 10.1016/0009-2509(84)80031-7.
  • 5. Bałdyga J., Bourne J.R., 1986. Principles of micromixing, In: Cheremisinoff N.P. (Ed.), Encyclopedia of Fluid Mechanics. Gulf Publishing Company, Houston, Texas, 147–201.
  • 6. Bałdyga J., Bourne J.R., 1989. Simplification of micromixing calculations. Chem. Eng. J., 42, 83-101. DOI: 10.1016/0300-9467(89)85002-6.
  • 7. Bałdyga J., Bourne J.R., 1990. Comparison of the engulfment and the interaction-by-exchange-with-the–mean micromixing models. Chem. Eng. J., 45, 25-31. DOI: 10.1016/0300-9467(90)80022-5.
  • 8. Bałdyga J., Bourne J. R., 1999. Turbulent Mixing and Chemical Reactions. Wiley, Chichester.
  • 9. Bałdyga J., Bourne J.R., Walker B., 1998. Non-isothermal micromixing in turbulent liquids: Theory and experiment. Can. J. Chem. Eng., 76, 641-649. DOI: 10.1002/cjce.5450760336.
  • 10. Baldyga J., Bourne J.R., Zimmermann B., 1994. Investigation of mixing in jet reactors using fast, competitiveconsecutive reactions. Chem. Eng. Sci., 49, 1937-1946. DOI: 10.1016/0009-2509(94)80078-2.
  • 11. Bałdyga J., Henczka M., 1997. Turbulent mixing and parallel chemical reactions in a pipe. Récents Progrés en Génie des Procédés, 11, 341-348.
  • 12. Bałdyga J., Henczka M., Makowski Ł., 2001. Effects of mixing on parallel chemical reactions in a continuousflow stirred-tank reactor. Chem. Eng. Res. Des., 79, 895-900. DOI: 10.1205/02638760152721109.
  • 13. Bałdyga J., Jasińska M., 2011. Reactive mixing and dispersion processes in rotor-stator devices, In: Günter Wozny (Ed.), Process Engineering and Chemical Plant Design. Universitätsverlag der TU Berlin, Berlin, 135-144.
  • 14. Bałdyga J., Jasińska M., Trendowska J., Tadeusiak W., Cooke M., Kowalski A., 2012. Application of test reactions to study micromixing and mass transfer in chemical apparatus. Technical Transactions, 5, 11-20.
  • 15. Bałdyga J., Kowalski A., Cooke M., Jasińska M., 2007a. Investigations of micromixing in a rotor-stator mixer. Chem. Process Eng., 28, 867-877.
  • 16. Bałdyga J., Kowalski A., Cooke M., Jasińska M., 2007b. Investigations of micromixing in a rotor-stator mixer. XIX Ogólnopolska Konferencja Inżynierii Chemicznej i Procesowej. Rzeszów 3-7 September 2007, 31-34.
  • 17. Bałdyga J., Orciuch W., Makowski Ł., Malik K., Özcan-Taşkin G., Eagles W., Padron G., 2008. Dispersion of nanoparticle clusters in a rotor-stator mixer. Ind. Eng. Chem. Res., 47, 3652-3663. DOI: 10.1021/ie070899u.
  • 18. Batchelor G.K., 1980. Mass transfer from small particles suspended in turbulent flow. J. Fluid. Mech., 98, 609-623. DOI: 10.1017/S0022112080000304.
  • 19. Bolzern O., Bourne J.R., 1985. Rapid chemical reactions in a centrifugal pump. Chem. Eng. Res. Des., 63, 275-282.
  • 20. Bourne J.R., 2003. Mixing and the selectivity of chemical reactions. Org. Proc. Res. Dev., 7, 471-508. DOI: 10.1021/op020074q.
  • 21. Bourne J.R., 2008. Comments on the iodide/iodate method for chracterising micromixing. Chem. Eng. J., 140, 638-641. DOI: 10.1016/j.cej.2008.01.031.
  • 22. Bourne J.R., Kut O.M., Lenzner J., 1992. An Improved reaction system to investigate micromixing in highintensity mixers. Ind. Eng. Chem. Res., 31, 949-958. DOI: 10.1021/ie00003a042.
  • 23. Bourne J.R., Kut O.M., Lenzner J., Maire H., 1990. Kinetics of the diazo coupling between 1-naphthol and diazotized sulfanilic acid. Ind. Eng. Chem. Res., 29, 1761-1765. DOI: 10.1021/ie00105a004.
  • 24. Bourne J.R., Yu S., 1994. Investigation of micromixing in stirred tank reactors using parallel reactions. Ind. Eng. Chem. Res., 33, 41-55. DOI: 10.1021/ie00025a007.
  • 25. Chella R., Ottino J. M., 1985. Stretching in some classes of fluid motions and asymptotic mixing efficiencies as a measure of flow classification. Arch. Rat. Mech. Anal., 90, 15-42. DOI: 10.1007/BF00281585.
  • 26. Chu G-W., Song Y-H., Yang H-J., Chen J-M., Chen H., Chen J-F., 2007. Micromixing efficiency of a novel rotor–stator reactor. Chem. Eng. J., 128, 191–196. DOI: 10.1016/j.cej.2006.10.024.
  • 27. Commenge J.-M., Falk L., 2011. Villermaux–Dushman protocol for experimental characterization of micromixers. Chem. Eng. Process., 50, 979-990. DOI: 10.1016/j.cep.2011.06.006.
  • 28. Cooke M., Rodgers T.L., Kowalski A.J., 2011. Power consumption characteristics of an in-line Silverson high shear mixer. AIChE J., 58, 1683–1692. DOI: 10.1002/aic.12703.
  • 29. Costa P., Trevissoi C., 1972a. Some kinetic and thermodynamic features of reactions between partially segregated fluids. Chem. Eng. Sci., 27, 653-668. DOI: 10.1016/0009-2509(72)85001-2.
  • 30. Costa P., Trevissoi C., 1972b. Reactions with non-linear kinetics in partially segregated fluids. Chem. Eng. Sci., 27, 2041-2054. DOI: 10.1016/0009-2509(72)87062-3.
  • 31. Danckwerts, P.V., 1970. Gas-Liquid Reactions. McGraw-Hill, New York.
  • 32. Dopazo C., 1975. Probability density function approach for a turbulent heated jet. Centerline evolution. Phys. Fluids, 18, 397-404. DOI: 10.1063/1.861163.
  • 33. Dopazo C., O'Brien E.E., 1976. Statistical treatment of nonisothermal chemical reactions in turbulence. Combust. Sci. Technol., 13, 99-122. DOI: 10.1080/00102207608946731.
  • 34. Doraiswamy L.K., Sharma M.M., 1984. Heterogeneous reactions: Analysis, examples, and reactor design, Vol. 2: Fluid-fluid-solid reactions. Wiley, New York.
  • 35. Falk L., Commenge J.-M., 2010. Performance comparison of micromixers. Chem. Eng. Sci., 65, 405-411. DOI: 10.1016/j.ces.2009.05.045.
  • 36. Fang J.Z., Lee D. J., 2001. Micromixing efficiency in static mixer. Chem. Eng. Sci., 56, 3797–3802. DOI: 10.1016/S0009-2509(01)00098-7.
  • 37. Faryadi M., Rahimi M., Safari S., Moradi N., 2014. Effect of high frequency ultrasound on micromixing efficiencyin microchannels. Chem. Eng. Proc., 77, 13-21. DOI: 10.1016/j.cep.2014.01.001.
  • 38. Fournier C., Falk L., Villermaux J., 1996. A new parallel competing reaction system for assessing micromixing efficiency - experimental approach. Chem. Eng. Sci., 22, 5053-5064. DOI: 10.1016/0009-2509(96)00270-9.
  • 39. Fox R.O., 2003. Computational models for turbulent reacting flows. Cambridge University Press, Cambridge.
  • 40. Guichardon P., Falk P., 2000. Characterisation of mixing efficiency by the iodide/iodate reaction system. Part 1. Experimental procedure. Chem. Eng. Sci., 55, 4233–4243. DOI: 10.1016/S0009-2509(00)00068-3.
  • 41. Guichardon P., Falk P., Villermaux J., 2000. Characterisation of mixing efficiency by the iodide/iodate reaction system. Part 2. Kinetic study. Chem. Eng. Sci., 55, 4243–4245. DOI: 10.1016/S0009-2509(00)00069-5.
  • 42. Guo X., Fan Y., Luo L., 2013. Mixing performance assessment of a multi-channel mini heat exchanger reactor with arborescent distributor and collector. Chem. Eng. J., 227, 116–127. DOI: 10.1016/j.cej.2012.08.068.
  • 43. Hall S., Cooke M., Hamouz A. El-, Kowalski A.J., 2011a. Droplet break-up by in-line Silverson rotor–stator mixer. Chem. Eng. Sci., 66, 2068–2079. DOI: 10.1016/j.ces.2011.01.054.
  • 44. Hall S., Cooke M., Pacek A. W., Kowalski A.J., Rothman D., 2011b. Scaling up of Silverson rotor–stator mixers. Can. J. Chem. Eng., 89, 1040–1050. DOI: 10.1002/cjce.20556.
  • 45. Hall S., Pacek A. W., Kowalski A.J., Cooke M., Rothman D. 2013. The effect of scale and interfacial tension on liquids–liquid dispersion in in-line Silverson rotor– stator mixers. Chem. Eng. Res. Des., 91, 2156–2168. DOI: 10.1016/j.cherd.2013.04.021.
  • 46. Harada M., Arima K., Eguchi W. and Nagata S., 1962. Micro-mixing in a continuous flow reactor (coalescence and redispersion model). The Memoirs of the Faculty of Engineering, 24, 431-446.
  • 47. Hu H., Chen Z., Jiao Z., 2009. Characterization of micro-mixing in a novel impinging streams reactor. Front. Chem. Eng. China, 3, 58–64. DOI: 10.1007/s11705-009-0106-8.
  • 48. Jasińska M., Bałdyga J., 2010. Modelowanie mieszania z reakcją w mieszalniku statycznym typu Kenics. Inż. Ap. Chem., 49 (3), 41-42.
  • 49. Jasińska M., Bałdyga J., 2014. Effects of Rotor-Stator Mixer Performance on Drop Dispersion, Micromixing, Mass Transfer and Chemical Reactions. LAP Lamber Academic Publishing, Saarbrücken, Germany.
  • 50. Jasińska M., Bałdyga J., Cooke M., Kowalski A.J., 2010. Badanie mikromieszania płynów w mieszalniku typu rotor-stator z wykorzystaniem złożonych reakcji testowych. Inż. Ap. Chem., 49 (2), 59-60.
  • 51. Jasińska M., Bałdyga J., Cooke M., Kowalski A.J., 2012. Investigations of mass transfer and micromixing effects in two-phase liquid-liquid systems with chemical reaction. 14th European Conference on mixing. Warsaw, Poland, 10-13 September 2012, 175-180.
  • 52. Jasińska M., Bałdyga J., Cooke M., Kowalski A.J., 2013a. Application of test reactions to study micromixing in the rotor-stator mixer (test reactions for rotor-stator mixer). Appl. Therm. Eng., 57 (1-2), 172-179. DOI: 10.1016/j.applthermaleng.2012.06.036.
  • 53. Jasińska M., Bałdyga J., Cooke M., Kowalski A.J., 2013b. Investigations of mass transfer with chemical reactions in two-phase liquid-liquid systems. Chem. Eng. Res. Des., 91, 2169-2178. DOI: 10.1016/j.cherd.2013.05.010.
  • 54. Jasińska M., Bałdyga J., Cooke M., Kowalski A.J., 2014a. Power characteristics of in-line rotor-stator mixers. Technical-Transactions. Chemistry, 2-Ch, 29-34.
  • 55. Jasińska M., Bałdyga J., Cooke M., Kowalski A.J., 2015. Specific features of power characteristics of in-line rotor-stator mixers. Chem. Eng. Proc., 91, 43-56. DOI: 10.1016/j.cep.2015.03.015.
  • 56. Jasińska M., Bałdyga J., Hall S., Pacek A.W., 2013c. Dyspersja kropel w mieszalnikach typu rotor-stator. Inż. Ap. Chem., 52 (3), 187-188.
  • 57. Jasińska M., Bałdyga J., Hall S., Pacek A.W., 2014b. Dispersion of oil droplets in rotor–stator mixers: Experimental investigations and modeling. Chem. Eng. Process., 84, 45-53. DOI: 10.1016/j.cep.2014.02.008.
  • 58. Jasińska M., Nakielski P., Bałdyga J., 2011. Określanie efektywności mieszania z wykorzystaniem reakcji testowych w mikromieszalnikach cieczowych, homogenicznych, XII Ogólnopolskie Seminarium MIESZANIE. Szczecin-Międzyzdroje, 6-9 czerwca 2011, 79-84.
  • 59. Jia Z., Zhao Y., Liu L., Heb F., Liu Z., 2006. A membrane reactor intensifying micromixing: Effects of parameters on segregation index. J. Membr. Sci., 276, 295-300. DOI: 10.1016/j.memsci.2005.10.003.
  • 60. Johnson B.K., Prud’homme R.K., 2003. Chemical processing and micromixing in confined impinging jets. AIChE J., 49, 2264-2282. DOI: 10.1002/aic.690490905.
  • 61. Kashid M., Renken A., Kiwi-Minsker L., 2011. Mixing efficiency and energy consumption for five generic microchannel designs. Chem. Eng. J., 167, 436–443. DOI: 10.1016/j.cej.2010.09.078.
  • 62. Kolmogorov A.N., 1949. On the disintegration of drops in a turbulent flow. Dokl. Akad. Nauk SSSR, 66, 825–828.
  • 63. Kölbl A., Desplantes V., Grundemann L., Scholl S., 2013. Kinetic investigation of the Dushman reaction at concentrations relevant to mixing studies in stirred tank reactors. Chem. Eng. Sci., 93, 47–54. DOI: 10.1016/j.ces.2013.01.067.
  • 64. Kölbl A., Kraut M., Schubert K., 2008. The iodide iodate method to characterize microstructured mixing devices. AIChE J., 54, 639–645. DOI: 10.1002/aic.11408.
  • 65. Kölbl A., Schmidt-Lehr S., 2010. The iodide iodate reaction method: The choice of the acid. Chem. Eng. Sci., 65, 1897-1901. DOI: 10.1016/j.ces.2009.11.032.
  • 66. Kunowa K., Schmidt-Lehr S., Pauer W., Moritz H.-U., Schwede Ch., 2007. Characterization of mixing efficiency in polymerization reactors using competitive-parallel reactions, Macromol. Symp., 259, 32–41. DOI: 10.1002/masy.200751305.
  • 67. Lenzner, J., 1991. Der Einsatz rascher, kompetitiver Reaktionen zur Untersuchung von Mischeinrichtungen. Ph.D. Thesis No. 9469, ETH, Zurich.
  • 68. Lee J., Ashokkumar M., Kentish S.E., 2014. Influence of mixing and ultrasound frequency on antisolvent crystallisation of sodium chloride. Ultrason. Sonochem., 21, 60–68. DOI: 10.1016/j.ultsonch.2013.07.005.
  • 69. Levenspiel O., 1972. Chemical reaction engineering. Wiley, New York.
  • 70. Liu Y., Fox R.O., 2006. CFD Prediction for chemical processing in a confined impinging-jets reactor. AIChE J., 52, 731-744. DOI: 10.1002/aic.10633.
  • 71. Mahajan A.J., Kirwan D.J., 1996. Micromixing effects in a two-impinging-jets precipiatator. AIChE J., 42(7), 1801-1814. DOI: 10.1002/aic.690420702.
  • 72. Malecha K., Golonka L.J., Bałdyga J., Jasińska M., Sobieszuk P., 2009. Serpentine microfluidic mixer made In LTCC. Sens. Actuators B: Chem., 143, 400-413. DOI: 10.1016/j.snb2009.08.010.
  • 73. Monnier H., Wilhelm A.M., Delmas H., 1999. The influence of ultrasound on micromixing in a semi-batch reactor. Chem. Eng. Sci., 54, 2953-2961. DOI: 10.1016/S0009-2509(98)00335-2.
  • 74. Monnier H., Wilhelm A.M., Delmas H., 2000. Efects of ultrasound on micromixing in flow cell. Chem. Eng. Sci., 55, 4009-4020. DOI: 10.1016/S0009-2509(00)00067-1.
  • 75. Nouri L., Legrand J., Benmalek N., Imerzoukene F., Yeddou A.-R., Halet F., 2008. Characterisation and comparison of the micromixing efficiency in torus and batch stirred reactors. Chem. Eng. J., 142, 78–86. DOI: 10.1016/j.cej.2008.01.030.
  • 76. Nunes M.I., Santos R.J., Dias, M.M., Lopes J.C.B., 2012. Micromixing assessment of confined impigning jest mixers used in RIM. Chem. Eng. Sci., 74, 276-286. DOI: 10.1016/j.ces.2012.02.054.
  • 77. Ottino J.M., 1980. An efficiency for batch mixing of viscous fluids. Chem. Eng. Sci., 35, 1454–1457. DOI: 10.1016/0009-2509(80)85142-6.
  • 78. Ottino J.M., 1981. Efficiency of mixing from data on fast reactions in multi-jest reactors and stirred tanks. AIChE J., 27, 184–192. DOI: 10.1002/aic.690270203.
  • 79. Özcan-Taşkın G., Kubicki D., Padron G., 2011. Power and flow characteristics of three rotor–stator heads. Can. J. Chem. Eng., 89, 1005–1017. DOI: 10.1002/cjce.20553.
  • 80. Palmer A.D., Lietzke M.H., 1982. The equilibria and kinetics of iodine hydrolysis. Radiochim. Acta, 31, 37-44. DOI: 10.1524/ract.1982.31.12.37.
  • 81. Panic S., Loebbecke S., Tuercke T., Antes J., Boskovic C., 2004. Experimental approaches to a better understanding of mixing performance of microfluidic devices. Chem. Eng. J., 101, 409–419. DOI: 10.1016/j.cej.2003.10.026.
  • 82. Parvizian F., Rahimi M., Faryadi M., 2011. Macro- and micromixing in a novel sonochemical reactor using high frequency ultrasound. Chem. Eng. Proc., 50, 732-740. DOI: 10.1016/j.cep.2011.06.011.
  • 83. Parvizian F., Rahimi M., Azimi N., 2012. Macro- and micromixing studies on a high frequency continuous tubular sonoreactor. Chem. Eng. Proc., 57-58, 8-15. DOI: 10.1016/j.cep.2012.04.006.
  • 84. Patterson G.K., 1985. Modelling of turbulent reactors, In: Ulbrecht J.J., Patterson G.K. (Eds.), Mixing of liquids by mechanical agitation, chemical engineering: Concepts and reviews. Gordon and Breach Science Publishers, Vol. 1, 29-58.
  • 85. Pope S.B., 1985. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci., 11, 119-192. DOI: 10.1016/0360-1285(85)90002-4.
  • 86. Rożeń A., 2008. Micromixing of fluids differing in viscosity in laminar flow systems (in Polish). Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  • 87. Schaer E., Guichardon P., Falk L., Plasari E., 1999. Determination of local energy dissipation rates in impinging jets by a chemical reaction method. Chem. Eng. J., 72, 125-138. DOI: 10.1016/S1385-8947(98)00152-1.
  • 88. Schönstedt B., Jacob H.J., Schilde C., Kwade A., 2015. Scale-up of the power draw of inline-rotor–stator mixers with high throughput. Chem. Eng. Res. Des., 93, 12–20. DOI: 10.1016/j.cherd.2014.04.004.
  • 89. Siddiqui S.W., Zhao Y., Kukukova A., Kresta S.M., 2009. Characteristics of a confined impinging jet reactor: energy dissipation, homogeneous and heterogeneous reaction products, and effect of unequal flow. Ind. Eng. Chem. Res., 48, 7945–7958. DOI: 10.1021/ie801562y.
  • 90. Su Y., Chen G., Yuan Q., 2011. Ideal micromixing performance in packed microchannels. Chem. Eng. Sci., 66, 2912–2919. DOI: 10.1016/j.ces.2011.03.024.
  • 91. Villermaux J., Devillon J.C., 1972. Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide per modéle d'interaction phénoménologique. 2nd Int. Symp. On Chemical Reaction Engieering. Amsterdam, 1972, B1-13.
  • 92. Villermaux J., Falk L., 1994. A generalized mixing model for initial contacting of reactive fluids. Chem. Eng. Sci., 49 (24B), 5127 5140. DOI: 10.1016/0009-2509(94)00303-3.
  • 93. Walker B., 1996. Einfluss der Temperatursegregation auf die Slektivität rasch ablaufender Reaktionen. Ph.D. Thesis No. 11588, ETH, Zurich.
  • 94. Yu. S., 1993. Micromixing and Parallel Reactions. Ph.D. Thesis, ETH, Zurich.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1a7c764-0300-4e0d-872c-da243cba15ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.