Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ammonium nitrate fuel oil (ANFO) compositions are widely used bulk industrial explosives in mining and civil engineering. Even though they are being replaced by the latest generation of emulsion explosives, some unique properties, such as a relatively simple production process, low price and very low impact sensitivity to stimuli, make them a good alternative to other explosives. However, a suitable primer should be used for the efficient initiation of ANFOs. Thus, three types of primers were studied in order to evaluate the effect of priming on the detonation development of ANFOs. Measurements were performed using the continuous resistance wire technique. The development of the detonation until it reached the stable detonation velocity has been analysed and discussed. An analysis confirmed that, depending on the type of primer used, a stable detonation velocity of an ANFO is achieved at different distances from the primer. The results have also proved that there is no significant influence of the type of primer used on the stable velocity of detonation for the tested diameter. An analysis confirmed that, depending on the type of primer used, a stable detonation velocity of ANFO is achieved at different distances from the primer.
Słowa kluczowe
Rocznik
Tom
Strony
196--212
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
- KGHM CUPRUM Sp. z o.o. Research and Development Centre, 2-8 gen. W. Sikorskiego Street, 53-659 Wrocław, Poland
autor
- KGHM CUPRUM Sp. z o.o. Research and Development Centre, 2-8 gen. W. Sikorskiego Street, 53-659 Wrocław, Poland
autor
- Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, ul. 6 Annopol Street, 03-236 Warsaw, Poland
autor
- Główny Instytut Górnictwa – Państwowy Instytut Badawczy, 1 Gwarków Square, 40-160 Katowice, Poland
Bibliografia
- [1] Mahedavan, E.G. Ammonium Nitrate Explosives for Civil Application. Wiley-VCH, Weinheim, 2013, ISBN: 978-3-52-733028-7.
- [2] Olofsson, S. Applied Explosives Technology for Construction and Mining. Applex AB, Ärla, 2002, ISBN: 978-9-17-970634-0.
- [3] Yancik, J.J. Some Physical, Chemical, and Thermohydrodynamic Parameters of Explosive Ammonium Nitrate-Fuel Oil Mixtures. Ph.D. thesis, University of Missouri, 1960.
- [4] Dobrilović, M.; Bohanek, V.; Žganec, S. Influence of Explosive Charge Temperature on the Velocity of Detonation of ANFO Explosives. Cent. Eur. J. Energ. Mater. 2014, 11(2): 191-197.
- [5] Dhekne, P.; Pradhan, M.; Jade, R.K. Assessment of the Effect of Blast Hole Diameter on the Number of Oversize Boulders Using ANN Model. J. Inst. Eng. Ser. D. 2016, 97(1): 21-31; https://doi.org/10.1007/s40033-015-0083-7.
- [6] Mesec, J.; Žganec, S.; Kovač, I. In-Hole Velocity of Detonation (VOD) Measurements as a Framework for the Selection Type of Explosive. Int. J. Min. Sci. Technol. 2015, 25(4): 675-680; https://doi.org/10.1016/j.ijmst.2015.05.024.
- [7] Maranda, A.; Nowaczewski, J.; Trzciński, W.; Cudziło, S. Study of the Process of Initiating Detonation in Nitrates and ANFO. (in Polish) Przegląd Górniczy 1995, 6: 23-26.
- [8] Žganec, S.; Bohanek, V.; Dobrilović, M. Influence of a Primer on the Velocity of Detonation of ANFO and Heavy ANFO Blends. Cent. Eur. J. Energ. Mater. 2016, 13(3): 694-704; https://doi.org/10.22211/cejem/65006.
- [9] Maranda, A.; Paszula, J.; Zawadzka-Małota, I.; Kuczyńska, B.; Witkowski, W.; Nikolczuk, K.; Wilk, Z. Aluminum Powder Influence on ANFO Detonation Parameters. Cent. Eur. J. Energ. Mater. 2011, 8(4): 279-292.
- [10] Maranda, A.; Papliński, A.; Gałęzowski, D. Investigation on Detonation and Thermochemical Parameters of Aluminized ANFO. J. Energ. Mater. 2003, 21(1): 1-13; https://doi.org/10.1080/07370650305585.
- [11] Bohanek, V.; Dobrilović, M.; Škrlec, V. Influence of the Initiation Energy on the Velocity of Detonation of ANFO Explosive. Centr. Eur. J. Energ. Mater. 2013, 10(4): 555-568.
- [12] Zygmunt. B.; Buczkowski, D. Influence of Ammonium Nitrate Prills’ Properties on Detonation Velocity of ANFO. Propellants Explos. Pyrotech. 2007, 32(5): 411-414; https://doi.org/10.1002/prep.200700045.
- [13] Miyake, A.; Takahara, K.; Ogawa, T.; Ogata, Y.; Wada, Y.; Arai, H. Influence of Physical Properties of Ammonium Nitrate on the Detonation Behaviour of ANFO. J. Loss Prev. Process Ind. 2001, 14: 533-538; https://doi.org/10.1016/S0950-4230(01)00041-9.
- [14] Araos, M.; Onederra, I. Development of a Novel Mining Explosive Formulation to Eliminate Nitrogen Oxide Fumes. Min. Technol. 2015, 124(1): 16-23; https://doi.org/10.1179/1743286314Y.0000000074.
- [15] Kinoshita, N.; Kubota, S.; Saburi, T.; Ogata, Y.; Miyake, A. Influence of Charge Diameter on Detonation Velocity and Reaction Zone of ANFO Explosive Contained in a Steel Tube. Sci. Technol. Energ. Mater. 2011, 72(1): 21-25.
- [16] Jackson, S.I.; Kiyanda, C.B.; Short, M. Experimental Observations of Detonation in Ammonium-Nitrate-Fuel-Oil (ANFO) Surrounded by a High-Sound-Speed, Shockless, Aluminum Confiner. Proc. Combust. Inst. 2010, 33(2): 2219-2226; https://doi.org/https://doi.org/10.1016/j.proci.2010.07.084.
- [17] Jackson, S.I. The Dependence of Ammonium-Nitrate Fuel-Oil (ANFO) Detonation on Confinement. Proc. Combust. Inst. 2017, 36(2): 2791-2798; https://doi.org/10.1016/j.proci.2016.09.027.
- [18] Marlair, G.; Kordek, M.A. Safety and Security Issues Relating to Low Capacity Storage of AN-Based Fertilizers. J. Hazard. Mater. 2005, 123: 13-28; https://doi.org/10.1016/j.jhazmat.2005.03.028.
- [19] Pittman, W.; Han, Z.; Harding, B.; Rosas, C.; Jiang, J.; Pineda, A.; Mannan, M.S. Lessons to Be Learned from an Analysis of Ammonium Nitrate Disasters in the Last 100 Years. J. Hazard. Mater. 2014, 280: 472-477; https://doi.org/10.1016/j.jhazmat.2014.08.037.
- [20] Mertuszka, P.; Pytlik, M. Analysis and Comparison of the Continuous Detonation Velocity Measurement Method with the Standard Method. High Energy Mater. 2019, 11(2): 63-72; https://doi.org/10.22211/matwys/0182.
- [21] Sivaraman, S.; Varadharajan, S. Investigative Consequence Analysis: a Case Study Research of Beirut Explosion Accident. J. Loss Prev. Process Ind. 2021, 69; https://doi.org/10.1016/j.jlp.2020.104387.
- [22] Press, W.H.; Teukolsky, S.A. Savitzky-Golay Smoothing Filters. Comput. Phys. 1990, 4(669): 669-672.
- [23] CCPS Process Safety Glossary. https://www.aiche.org/ccps/resources/glossary [accessed on June 12, 2024].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1a4aca6-3071-4efb-a867-8d69df83dbe7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.