PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermo-Mechanical Responses of an Annular Cylinder with Temperature Dependent Material Properties under Thermoelasticity without Energy Dissipation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work is concerned with thermoelasticity without the energy dissipation theory for a problem of an infinitely long and isotropic annular cylinder of temperature dependent physical properties.We employ the thermoelasticity theory of GN-II and derive the basic governing equations with variable material properties. The formulation is then applied to solve a boundary value problem of an annular cylinder with its inner boundary assuming to be stress free and subjected to exponential decay in temperature and sinusoidal temperature distribution. The outer boundary is also assumed to be stress free and is maintained at reference temperature in both cases. We solve the non-linear coupled differential equations by applying the finite difference approach efficiently. We analyze the numerical results in a detailed way with the help of different graphs. The effects of temperature dependency of material properties on the thermo-mechanical responses for two different time dependent temperature distributions applied at the inner boundary are highlighted.
Twórcy
autor
  • Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
autor
  • Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
  • Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
Bibliografia
  • [1] M.A. Biot, Thermoelasticity and Irreversible Thermodynamics, Journal of Applied Physics 27, 240–253 (1956).
  • [2] J.M.C. Duhamel, Second Memoire Sur Les Phenomenes Thermo-Mecaniques, Journal de l’Ecole Polytechnique 15, 1-57 (1837).
  • [3] J.M.C. Duhamel, Memoire sur le calcul des actions moleculairs devoloppees par les changements de temperatue dans les corps solids, Memoires par divers Savans (Académie des sciences, Paris) 5, 440-498 (1838).
  • [4] F.E. Neumann, Die gesetze der doppebrechung des lichts in comprimirten order ungleichförmig erwärmten unkrystallinischen körpern, Abh. Kön. Akad. Wiss. Berlin, 2, 3-254 (1841).
  • [5] D.S. Chandrasekharaiah, Hyperbolic Thermoelasticity: A Review of recent Literature, Applied Mechanics Reviews 51, 705–729 (1998).
  • [6] J. Ignaczak and M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speed, Oxford University Press, Oxford, New York, (2010).
  • [7] H.W. Lord and Y. Shulman, A Generalized Dynamical Theory of Thermoelasticity, Journal of the Mechanics and Physics of Solids 15, 299-309 (1967).
  • [8] A.E. Green and K.A. Lindsay, Thermoelasticity, Journal of Elasticity 2, 1-7 (1972).
  • [9] R.B. Hetnarski and J. Ignaczak, Generalized Thermoelasticity, Journal of Thermal Stresses 22, 451-476 (1999).
  • [10] A.E. Green and P.M. Naghdi, A Re-Examination of the Base Postulates of Thermo-Mechanics, Proceedings of the Royal Society London A 432, 171-194 (1991).
  • [11] A.E. Green and P.M. Naghdi, On undamped Heat Waves in an Elastic Solid, Journal of Thermal Stresses 15, 253-264 (1992).
  • [12] A.E. Green and P.M. Naghdi, Thermoelasticity Without Energy Dissipation, Journal of Elasticity 31, 189-209 (1993).
  • [13] R. Quintanilla and B. Straughan, Growth and Uniqueness in Thermoelasticity, Proceedings of the Royal Society London A 456, 1419–1429 (2000).
  • [14] R. Quintanilla, Some Remarks on Growth and Uniqueness in Thermoelasticity, International Journal of Mathematics and Mathematical Sciences 10, 617–623 (2003).
  • [15] R. Quintanilla, On the Impossibility of Localization in Linear Thermoelasticity, Proceedings of the Royal Society London A 463, 3311–3322 (2007).
  • [16] S. Chirita and M. Ciarletta, Reciprocal and Variational Principles in Linear Thermoelasticity Without energy Dissipation, Mechanics Research Communications 37, 271–275 (2010).
  • [17] S. Mukhopadhyay and R. Prasad, Variational and Reciprocal Principles in Linear Theory of Type-III thermoelasticity, Mathematics and Mechanics of Solids 16, 435–444 (2011).
  • [18] N. Noda, Thermal Stress in Material with Temperature-Dependent Properties, In Thermal stresses, R.B. Hetnarski (ed), Elsevier Science, North Holland, Amsterdam, 391-483 (1986).
  • [19] N. Noda, Thermal Stresses in Materials with Temperature-Dependent Properties, Applied Mechanics Review 44, 383-397 (1991).
  • [20] T. Suhara, Elasticity of Steel Strained by Unequal Heating, The Japan Society of Mechanical Engineers 21, 25-63 (1918).
  • [21] M.A. Ezzat, M.I. Othman and A.S. EI-Karamany, The Dependence of the Modulus of Elasticity on the Reference Remperature in Generalized Thermoelasticity, Journal of Thermal Stresses 24, 1159-1176 (2011).
  • [22] M.I.A. Othman, Lord-Shulman Theory Under the Dependence of the Modulus of Elasticity on the Reference Temperature in Two-Dimensional Generalized Thermo-Elasticity, Journal of Thermal Stresses 25, 1027-1045 (2002).
  • [23] M.A. Ezzat and M.I.A. Othman, State-Space Approach to Generalized Magneto-Thermo-Elasticity with Thermal Relaxation in a Medium of Perfect Conductivity, Journal of Thermal Stresses 25, 409-429 (2002).
  • [24] M.I.A. Othman, State-Space Approach to Generalized Thermoelasticity Plane Waves with Two Relaxation Times Under Dependence of the Modulus of Elasticity on the Reference Temperature, Canadian Journal of Physics 81, 1403-1418 (2011).
  • [25] A.N. Eraslan and Y. Kartal, A Non-Linear Shooting Method Applied to Solid Mechanics: Part 1, Numerical Solution of a Plane Stress Model, International Journal of Nonlinear Analysis and Phenomena 1, 27-40 (2004).
  • [26] M.A. Ezzat, M. Zakaria and A. Abdel-Bary, Generalized Thermoelasticity with Temperature Dependent Modulus of Elasticity Under Three Theories, Journal of Applied Mathematics and Computing 14, 193-212 (2004).
  • [27] H.M. Youssef and I.A. Abbas, Thermal Shock Problem of Generalized Thermoelasticity for an Annular Cylinder with Variable Thermal Conductivity, Computational Methods in Science and Technology 13, 95-100 (2007).
  • [28] H. Argeso and A.N. Eraslan, On the Use of Temperature Dependent Physical Properties in Thermo-Mechanical Calculations for Solid and Hollow Cylinder, International Journal of Thermal Sciences 47, 136-146 (2008).
  • [29] S. Mukhopadhyay and R. Kumar, Solution of a Problem of Generalized Thermoelasticity of an Annular Cylinder with Variable Material Properties by Finite Difference Method, Computational Methods in Science and Technology 15, 169-176 (2009).
  • [30] M.I.A. Othman, Y.D. Elmaklizi and S.M. Said, Generalized Thermoelastic Medium with Temperature-Dependent Properties for Different Theories Under the Effect of Gravity Field, International Journal of Thermophysics 34, 521–537 (2013).
  • [31] M.I.A. Othman and M.I.M. Hilal, Rotation and Gravitational Field Effect on Two-Temperature Thermoelastic Material with Voids and Temperature Dependent Properties Type III, Journal of Mechanical Science and Technology 29, 3739-3746 (2015).
  • [32] K.K. Kalkal and S. Deswal, Effects of Phase Lags on Three-Dimensional Wave Propagation with Temperature-Dependent Properties, International Journal of Thermophysics 35, 952–969 (2014).
  • [33] Y. Wang, X. Zhang and D. Liu, Asymptotic Analysis of Generalized Thermoelasticity for Axi-Symmetric Plane Strain Problem with Temperature-Dependent Material Properties, International Journal of Applied Mechanics 5, 1350023 (2013).
  • [34] I.A. Abbas, Eigenvalue Approach in a Three-Dimensional Generalized Thermoelastic Interactions with Temperature-Dependent Material Properties, Computers & Mathematics with Applications 68, 2036–2056 (2014).
  • [35] I.A. Abbas and H.M. Youssef, A Non-Linear Generalized Thermoelasticity Model of Temperature-Dependent Materials Using Finite Element Method, International Journal of Thermophysics 33, 1302–1313 (2012).
  • [36] A.M. Zenkour and I.A. Abbas, Non-Linear Transient Thermal Stress Analysis of Temperature-Dependent Hollow Cylinders Using a Finite Element Model, International Journal of Structural Stability and Dynamics 14, 1450025 (2014).
  • [37] A.M. Zenkour and I.A. Abbas, A Generalized Thermoelasticity Problem of Annular Cylinder with Temperature-Dependent Density and Material Properties, International Journal of Mechanical Sciences 84, 54–60 (2014).
  • [38] T. He, S. Shi, Effect of Temperature-Dependent Properties on Thermoelastic Problems with Thermal Relaxations, Acta Mechanica Solida Sinica 27, 412-419 (2014).
  • [39] M.R. Abd-El-Salam, A.M. Abd-Alla, H.A. Hosham, A numerical solution of magneto-thermoelastic problem in non-homogeneous isotropic cylinder by the finite-difference method, Applied Mathematical Modelling, 31, 1662-1670 (2007).
  • [40] V.V. Rishin, B.A. Lyashenko, K.G. Akinin and G.N. Nadezhdin, Temperature Dependence of Adhesion Strength and Elasticity of Some Heat-Resistant Coatings, Strength of Materials 5, 123-126 (1973).
  • [41] H.H. Sherief and H.A. Salah, A Half Space Problem in the Theory of Generalized Thermoelastic Diffusion, International Journal of Solids and Structures 42, 4484-4493 (2005).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d18c9d03-9271-4c29-af9a-24b51ddf0f2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.