PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advances in Surface Engineering Using TIG Processing to Incorporate Ceramic Particulates into Low Alloy and Microalloyed Steels – A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The application of surface engineering techniques to improve the surface properties of carbon steels using high powered lasers for transformation hardening and surface melting is well established. Based on this previous research, a tungsten inert gas torch (TIG) technique has more recently been explored for the surface modification of steels, as a much cheaper option to lasers. In the present research, initial studies compared the preheat temperature recorded on a low alloy steel with Ar, He and N protective shielding gases over a single track length. The effect of overlapping 17 tracks on the temperature variation for three different gases was also explored. These studies lead to Ar being the chosen gas for the next stages of the work. During TIG processing, incorporation of fine TiC or SiC ceramic particulates into the liquid steel was investigated, with the aim of obtaining a uniformly high hardness in a crack and porous- free melt zone of sufficient length and depth to provide improved wear resistance over the parent steel. TiC particulates of 45-100µm size were preplaced on a low alloy steel, and following TIG processing, the hardness increased from the as-received steel value of ~200 Hv to~800 Hv, due to some dissolution and re-precipitation of TiC particulates. The incorporation of the more economic SiC particulates of ∼5μm or ∼75 μm size preplaced on a microalloyed steel was investigated. Single track surface zones were melted by a tungsten inert gas torch, and the effect of two energy inputs, 420 and 840 Jmm−1, compared. The results showed that the samples melted using 420 Jmm−1 were crack-free. Analytical microstructural and XRD studies established that both sizes of SiC particulates dissolved, and that some of the hardness increase recorded was due to formation of a high carbon martensite. A potential method of decreasing SiC particulate dissolution by generating a high Fe–Si liquid, thereby retaining the ceramic in the microalloyed steel after processing, was found to show promise.
Twórcy
  • Department of Mechanical Engineering, Glasgow Caledonian University, Glasgow G4 0BA, UK
  • Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
  • Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
Bibliografia
  • 1. Ettmayer P. Hardmetals and Cermets. Annual Review of Materials Science 1989; 19: 145-164.
  • 2. Jaworska L, Rozmus M, Królicka B, Twardowska A.Functionally graded cermets. J. Achiev. Mater. Manuf. Eng., 2006;17 (1-2):73-76.
  • 3. Barsoum MW, Radovic M. MAX phases: bridging the gap between metals and ceramics. Am Ceram Soc Bull. 2013;92(3): 20–27.
  • 4. Muñoz de Escalona P, Lees C, Sillars F, Mridha S, Baker TN. Development of a metal matrix composite layer on a microalloyed steel surface by dissociating MAX211 Ti2AlC particles using a TIG torch technique. Adv Mater Proc Technol. 2017;3(4):586-599.
  • 5. Song Y, Baker TN. Accelerated aging processes in ceramic reinforced aa-6061 composites. Mater Sci Technol. 1994;10 (5):406-413.
  • 6. Gurcan AB, Baker TN. Wear behavior of AA6061 aluminum-alloy and its composites.‎ Wear 1995;188 ‏(1/2:)185-191.
  • 7. Zhang, BL; Maclean, MS; Baker, TN. Hot deformation behaviour of aluminium alloy 6061/SiCp MMCs made by powder metallurgy route. Mater Sci Technol. 2000;16(7-8):‏897-902.
  • 8. Baker TN, Xin H, Hu C, Mridha S. Design of surface in-situ metal-ceramic composite formation via laser treatment. Mater Sci Technol. 1994;10(6): 536-544.
  • 9. Hu C, Xin H, Baker, TN. Laser processing of an aluminium AA6061 alloy involving injection of SiC particulate. J Mater. Sci.1995; 30 (23):5985-5990.nol. 1996;12 (3) :595-602
  • 15. Mridha S, Ubhi HS, Holdway P, Baker T N, Bowen A W. Metal–ceramic composite layer formation on titanium surfaces through laser treatment, in: F.H. Froes, I.L. Caplan (Eds.), Proceedings of the Titanium’92, TMS, Warrendale, p. 2641. 1996 227-232.
  • 16. Baker T N. Laser surface modification of titanium alloys. Surface engineering of light alloys: aluminium, magnesium and titanium alloys. Woodhead Publishing in Materials, 2010,398-443.
  • 17. Ayers JD, Tucker TR, Particulate-TiC-hardened steel surfaces by laser melt injection‎. Thin Solid Films.1980; 73:201-207.
  • 18. Abboud J H, West DRF Ceramic–metal composites produced by laser treatment. Mater. Sci. Technol., 1989; 5l (7):725-728.
  • 19. Bergmann HW, Mordike BL. Structure of laser melted steel surface. Zeitschrif fur Metall.1980;71:658-665.
  • 20. Bell T, Morton PH, Bloyce A. Towards the design of dynamically loaded titanium engineering components. Mater. Sci. Eng. A, 1994; A184 (2): 73–86.
  • 21. Atamert S, Bhadeshia HKDH. Comparison of the microstructures and abrasive wear properties of stellite hardfacing alloys deposited by arc-welding and laser cladding Metall. Trans. A, 1989;20A:1037–1054.
  • 22. Khan TI, Fowles D. Surface modification of tool steel using tungsten arc heat source. Surf. Eng., 1997; 13: 257–259.
  • 23. Mridha S, Ng BS. Addition of ceramic particles to TIG melted titanium surfaces. Surf. Eng. 1999; 15: 210–215.
  • 24. Wang XH,Zhang M, Zou ZD, Song SL, Han F, Qua SY. In situ production of Fe-TiC surface composite coatings by tungsten-inert gas heat source. Surf Coat Technol.2006;200: 6117-6122.
  • 25. Paraye NK, Neog SP, Ghosh PK, Das S. Surface modification of AISI 8620 steel by in-situ grown TiC particle using TIG arcing. Surf Coat Technol.2021; 405:126533.
  • 26. Patel P, Mridha S, Baker TN. Influence of shielding gases on preheat produced in surface coatings incorporating SiC particulates into microalloy steel using TIG technique. Mater Sci Technol. 2014; 30:1506-1514.
  • 27. Mridha S, Baker T N. Overlapping tracks processed by TIG melting TiC preplaced powder on low alloy steel surfaces. Mater Sci Technol. 2015; 31:337-343.
  • 28. Mridha S., Idriss A N Md, Maleque M A, Yaacob II, Baker TN. Melting of multipass surface tracks in steel incorporating titanium carbide powder. Mater Sci Technol. 2015; 31:1362-1369.
  • 29. Muñoz de Escalona P, Mridha S, Baker TN. Effect of shielding gas on the properties and microstructure of a melted steel surface by a TIG torch. Adv Mater Proc Technol. 2015;1:435–443.
  • 30. Muñoz de Escalona P, Mridha S, Baker TN. Effect of silicon carbide particle size on the microstructure and properties of a coating layer on steel produced by TIG technique. Adv Mater Proc Technol. 2016; 2:451–460.
  • 31. Muñoz de Escalona P, Mridha S, Baker TN. Effect of shielding gas and energy input on the surface geometry and microstructure of a microalloyed steel surface melted steel with a TIG torch. Adv Mater Proc Technol. 2017; 3:550-562.
  • 32. Muñoz de Escalona P, Walker A, Ogwu A, Mridha S, Baker T N. Comparison of empirical and predicted substrate temperature during surface melting of microalloyed steel using TIG technique and considering three shielding gases. Appl.Surf. Sci.2019;477:179-183.
  • 33. Muñoz de Escalona P, Sillars F, Morrocco T, Edgar R, Mridha S, Baker T N. Silicon carbide particles incorporated into microalloyed steel surface:microstructure and properties. Mater Sci Technol. 2020; 36 (1):17–32.
  • 34. Baker T N, Muñoz-de Escalona P, Olasolo M, Marrocco T, Kelly J, Wei B, He K, Mridha S. Role of preplaced silicon on a TIG processed SiC incorporated microalloyed steel. Mater.Sci.Technol.2020; 36 (12): 1349-1363.
  • 35. Hu C, Baker TN. The importance of preheat before laser nitriding a Ti-6Al-4V alloy. Mater Sci Eng A. 1999;265: 268-275.
  • 36. Rosenthal D, Mathematical theory of heat distribution in welding and cutting. Weld J,1941;20:220-234.
  • 37. Majumdar JD, Chandraa BR, Nath AK, et al. Studies on compositionally graded silicon carbide dispersed composite surface on mild steel developed by laser surface cladding. J Mater Process Technol. 2008;203: 505–512.
  • 38. Tang WM, ZhengZX, DingHF, et al. A study of the solid state reaction between silicon carbide and iron. Mater Chem Phys. 2002; 74:2 58–264.
  • 39. Kawanishi S, Yoshikawa T , Tanaka T. Equilibrium phase relationship between SiC and a liquid phase in the Fe-Si-C system at 1523–1723K. Mater Trans. 2009; 50:806–813.
  • 40. Kubaschawski O. Iron-binary phase diagrams. New York (NY): Springer-Verlag; 1982.
  • 41. Liang YF, Lin JP, Ye F, Li YJ, Wang YL, Chen GL. Microstructure and mechanical properties of rapidly quenched Fe–6.5wt.% Si alloy. J Alloys Compds.2010;504S: S476–S479.
  • 42. Azwan M, Maleque M A, Rahman M M. TIG torch surfacing of metallic materials a critical review. Trans. Inst. Metal Finish.2019;97: 12-21.
  • 43. Su X, Yang Y. Research on track overlapping during Selective Laser Melting of powders .J Mater Proc.Technol. 2012;212:2074-2079.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d18c3822-d576-4d0d-abac-329fbb34a618
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.