PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluating large language models for medical information extraction: a comparative study of zero-shot and schema-based methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the application of large language models, particularly ChatGPT, in the extraction and structuring of medical information from free-text patient reports. The authors explore two distinct methods: a zero-shot extraction approach and a schema-based extraction approach. The dataset, consisting of 1230 anonymized French medical reports from the Department of Neonatology of the Mohammed VI University Hospital, served as the basis for these experiments. The findings indicate that while ChatGPT demonstrates a significant capability in structuring medical data, certain challenges remain, particularly with complex and non-standardized text formats. The authors evaluate the model's performance using precision, recall, and F1 score metrics, providing a comprehensive assessment of its applicability in clinical settings.
Rocznik
Strony
138--148
Opis fizyczny
Bibliogr. 15 poz., fig., tab.
Twórcy
  • Université Mohammed Premier, National School of Applied Sciences, LaRSA laboratory, AIRES team, Morocco
  • Université Mohammed Premier, Faculty of Medicine and Pharmacy Oujda, Morocco
  • Université Mohammed Premier, National School of Applied Sciences, LaRSA laboratory, AIRES team, Morocco
autor
  • Université Mohammed Premier, Faculty of Medicine and Pharmacy Oujda, Morocco
  • Université Mohammed Premier, National School of Applied Sciences, LaRSA laboratory, AIRES team, Morocco
Bibliografia
  • [1] Agrawal, M., Hegselmann, S., Lang, H., Kim, Y., & Sontag, D. (2022). Large Language Models are few-shot clinical information extractors. ArXiv, abs/2205.12689. https://doi.org/10.48550/arXiv.2205.12689
  • [2] Bergomi, L., Tommaso, M., Antonazzo, P., Alberghi, L., Bellazzi, R., Preda, L., Bortolotto, C., & Parimbelli, E. (2024). Reshaping free-text radiology notes into structured reports with generative question answering transformers. Artificial Intelligence in Medicine, 154, 102924. https://doi.org/10.1016/j.artmed.2024.102924
  • [3] Bhate, N., Mittal, A., He, Z., & Luo, X. (2023). Zero-shot learning with minimum instruction to extract social determinants and family history from clinical notes using GPT Model. IEEE International Conference on Big Data (BigData) (pp. 1476-1480). IEEE. https://doi.org/10.1109/BigData59044.2023.10386811
  • [4] Huang, J., Yang, D. M., Rong, R., Nezafati, K., Treager, C., Chi, Z., Wang, S., Cheng, X., Guo, Y., Klesse, L. J., Xiao, G., Peterson, E. D., Zhan, X., & Xie, Y. (2024). A critical assessment of using ChatGPT for extracting structured data from clinical notes. Npj Digital Medicine, 7(1), 106. https://doi.org/10.1038/s41746-024-01079-8
  • [5] Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., & Liu, T. (2024). A Survey on hallucination in Large Language Models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information Systems, 3703155. https://doi.org/10.1145/3703155
  • [6] Kaddari, Z., Mellah, Y., Berrich, J., Belkasmi, M. G., & Bouchentouf, T. (2021). Natural language processing: challenges and future directions. In T. Masrour, I. El Hassani, & A. Cherrafi (Eds.), Artificial Intelligence and Industrial Applications (Vol. 144, pp. 236–246). Springer International Publishing. https://doi.org/10.1007/978-3-030-53970-2_22
  • [7] Kernberg, A., Gold, J., & Mohan, V. (2024). Using ChatGPT-4 to create structured medical notes from audio recordings of physician-patient encounters: Comparative study. Journal of Medical Internet Research, 26, e54419. https://doi.org/10.2196/54419
  • [8] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). Training language models to follow instructions with human feedback. ArXiv, abs/2203.02155. https://doi.org/10.48550/arXiv.2203.02155
  • [9] Patra, B. G., Lepow, L. A., Kasi Reddy Jagadeesh Kumar, P., Vekaria, V., Sharma, M. M., Adekkanattu, P., Fennessy, B., Hynes, G., Landi, I., Sanchez-Ruiz, J. A., Ryu, E., Biernacka, J. M., Nadkarni, G. N., Talati, A., Weissman, M., Olfson, M., Mann, J. J., Zhang, Y., Charney, A. W., & Pathak, J. (2024). Extracting social support and social isolation information from clinical psychiatry notes: Comparing a rule-based natural language processing system and a large language model. Journal of the American Medical Informatics Association. https://doi.org/10.1093/jamia/ocae260
  • [10] Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121-154. https://doi.org/10.1016/j.iotcps.2023.04.003
  • [11] Straka, M., Náplava, J., Straková, J., & Samuel, D. (2021). RobeCzech: Czech RoBERTa, a monolingual contextualized language representation model. In K. Ekštein, F. Pártl, & M. Konopík (Eds.), Text, Speech, and Dialogue (Vol. 12848, pp. 197-209). Springer International Publishing. https://doi.org/10.1007/978-3-030-83527-9_17
  • [12] Tsai, R. T.-H., Wu, S.-H., Chou, W.-C., Lin, Y.-C., He, D., Hsiang, J., Sung, T.-Y., & Hsu, W.-L. (2006). Various criteria in the evaluation of biomedical named entity recognition. BMC Bioinformatics, 7, 92. https://doi.org/10.1186/1471-2105-7-92
  • [13] Yifan, Y., Jinhao, D., Kaidi, X., Yuanfang, C., Zhibo, S., & Yue, Z. (2024). A survey on large language model (LLM) security and privacy: The Good, The Bad, and The Ugly. High-Confidence Computing, 4(2), 100211. https://doi.org/10.1016/j.hcc.2024.100211
  • [14] Zelina, P., Halamkova, J., & Novacek, V. (2022). Unsupervised extraction, labelling and clustering of segments from clinical notes. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1362-1368). IEEE. http://dx.doi.org/10.1109/BIBM55620.2022.9995229
  • [15] Zhan, X., Humbert-Droz, M., Mukherjee, P., & Gevaert, O. (2021). Structuring clinical text with AI: Old versus new natural language processing techniques evaluated on eight common cardiovascular diseases. Patterns, 2(7), 100289. https://doi.org/10.1016/j.patter.2021.100289
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d18a99de-ffe5-4731-bc88-47adb793fae6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.