PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Tail asymptotics of light-tailed Weibull-like sums

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider sums of n i.i.d. random variables with tails close to exp{−xβ} for some β > 1. Asymptotics developed by Rootzén (1987) and Balkema, Klüppelberg, and Resnick (1993) are discussed from the point of view of tails rather than of densities, using a somewhat different angle, and supplemented with bounds, results on a random number N of terms, and simulation algorithms.
Rocznik
Strony
235--256
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Department of Mathematics, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
autor
  • Department of Actuarial Science, University of Lausanne, UNIL-Dorigny, 1015 Lausanne, Switzerland
autor
  • University of Queensland & Aarhus University, Department of Mathematics, University of Queensland, Brisbane, Queensland 4072, Australia
autor
  • Department of Mathematics, University of Queensland, Brisbane, Queensland 4072, Australia
Bibliografia
  • [1] A. A. Adler and G. Pakes, On relative stability and weighted laws of large numbers, Extremes 20 (2017), pp. 1-31.
  • [2] S. Asmussen, Conditional Monte Carlo for sums, with applications to insurance and finance, Ann. Actuar. Sci. (to appear in 2017); available at thiele.au.dk/publications.
  • [3] S. Asmussen and H. Albrecher, Ruin Probabilities, second edition, World Scientific, 2010.
  • [4] S. Asmussen and P. W. Glynn, Stochastic Simulation: Algorithms and Analysis, Springer, 2007.
  • [5] S. Asmussen and D. P. Kroese, Improved algorithms for rare event simulation with heavy tails, Adv. in Appl. Probab. 38 (2006), pp. 545-558.
  • [6] A. A. Balkema and P. Embrechts, High Risk Scenarios and Extremes: A Geometric Approach, European Mathematical Society, Amsterdam 2007.
  • [7] A. A. Balkema, C. Klüppelberg, and S. I. Resnick, Densities with Gaussian tails, Proc. Lond. Math. Soc. 66 (1993), pp. 568-588.
  • [8] A. A. Balkema, C. Klüppelberg, and S. I. Resnick, Domains of attraction for exponential families, Stochastic Process. Appl. 107 (2003), pp. 83-103.
  • [9] O. E. Barndorff-Nielsen and C. Klüppelberg, A note on the tail accuracy of the univariate saddlepoint approximation, Ann. Fac. Sci. Toulouse Math. (6) 1 (1) (1992), pp. 5-14.
  • [10] D. B. H. Cline, Convolution tails, product tails and domains of attraction, Probab. Theory Related Fields 72 (1986), pp. 529-557.
  • [11] P. Embrechts, E. Hashorva, and T. Mikosch, Aggregation of log-linear risks, J. Appl. Probab. 51A (2014), pp. 203-212.
  • [12] P. Embrechts, C. Klüppelberg, and T. Mikosch, Modeling Extreme Events for Insurance and Finance, Springer, 1997.
  • [13] E. Hashorva and J. Li, Asymptotics for a discrete-time risk model with the emphasis on financial risk, Probab. Engrg. Inform. Sci. 28 (2014), pp. 573-588.
  • [14] J. L. Jensen, Saddlepoint Approximations, Clarendon Press, Oxford 1995.
  • [15] S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, 2008.
  • [16] H. Rootzén, A ratio limit theorem for the tails of weighted sums, Ann. Probab. 15 (1987), pp. 728-747.
  • [17] T. Watanabe, Convolution equivalence and distributions of random sums, Probab. Theory Related Fields 142 (2008), pp. 367-397.
Uwagi
This paper is dedicated to Tomasz Rolski in appreciation of his fundamental contributions to applied probability over a lifetime, and of his sustaining friendship.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d17cf253-94ec-47ca-a0b2-5215c2f531ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.