PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Subjective measurement of resolution of image intensifier tubes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Limiting resolution is traditionally defined as a spatial frequency of smallest resolvable element of a resolution target that can be distinguish by a human observer. This definition and measurement method have been criticized in a series of literature sources due to its subjectivity and low repeatability/accuracy. Such criticism looks reasonable as it is commonly known that results of measurement of resolution of the same tubes carried out by several test teams can differ significantly. This paper presents a detail analysis of classical subjective measurement method of limiting resolution of image intensifier tubes implemented by real test systems. The findings show that in spite of a common opinion, subjectivity of measurement is not the main reason for differences of test results carried out by different test teams. The main reasons are differences in performance of optics of test systems, use of resolution targets of different types and polarity, and inherent spatial non-uniformity of performance of image intensifier tubes. The paper also shows that due to spatial non-uniformity it is very difficult to design automatic test systems that could produce the same results as human observers using classical subjective measurement method.
Słowa kluczowe
Czasopismo
Rocznik
Strony
149--162
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Military University of Technology, Institute of Optoelectronics, 2 Kaliski St., 00-908 Warsaw, Poland
Bibliografia
  • [1] MIL-I-49453 CR, Image intensifier assembly, 18 millimiter microchannel wafer, MX 10130/UV, 1989.
  • [2] MIL-I-49043, Image intensifier assembly 18 millimeter with automatic brightness control, 1995.
  • [3] MIL-I-49428, Image intensifier assembly, 18 mm, microchannel wafer mx-10160/avs-6, 1997.
  • [4] MIL-PRF-A3256363D(CR), Image intensifier assembly, 18 mm, microchannel wafer, MX-11769/UV, 2005.
  • [5] https://www.photonis.com/products/image-intensifier-tube-4g-0 (accessed 2023).
  • [6] https://www.l3t.com/integratedlandsystems/product/gen-iii-image-intensification-tubes/ (accessed 2023).
  • [7] http://katodnv.com/en/catalog/converters-3-generation/ (accessed 2023).
  • [8] https://www.hamamatsu.com/resources/pdf/etd/II_TII0007E.pdf (accessed 2023).
  • [9] DRAFT MIL-PRF A3314408, Industry Review, Performance specification: image intensifier I², Industry communication, 2019.
  • [10] https://en.wikipedia.org/wiki/1951_USAF_resolution_test_chart (accessed 2023).
  • [11] BENDER E.J., WOOD M.V., HOSEK, D.J., HART S.D., Characterization of domestic and foreign image intensifier tubes, Proceedings of the SPIE, Vol. 8706, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXIV, 2013: 870607. https://doi.org/10.1117/12.2015462
  • [12] ORTIZ S., OTADUY D., DORRONSORO C., Optimum parameters in image intensifier MTF measurements, Proceedings of the SPIE, Vol. 5612, Electro-Optical and Infrared Systems: Technology and Applications, 2004. https://doi.org/10.1117/12.578066
  • [13] WANG X., JIN W., GAO Z., WANG Z., BAI T., Research on digitally integrated test system for performance evaluation of image intensifier and intensified CCD, Proceedings of the SPIE, Volume 6150, 2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, 2006: 61500S. https://doi.org/10.1117/ 12.678099
  • [14] SARTOR M.A., PECINA J.W., PAUL C., HELMS B., ALSMAN D.L., System for the automatic inspection of image intensifier tubes, Proceedings of the SPIE, Vol. 2753, Visual Information Processing V, 1996. https://doi.org/10.1117/12.243584
  • [15] PARTEE J., PAUL C., SARTOR M., WEST J., WICHOWSKI N., MCINTYRE B., Automated intensifier tube measuring system, Proceedings of the SPIE, Vol. 6956, Display Technologies and Applications for Defense, Security, and Avionics II, 2008: 695608. https://doi.org/10.1117/12.771384
  • [16] WANG L., QIAN Y., WANG H., Objective evaluation of the resolution of low-light-level image intensifiers based on fast Fourier transform, Optical Engineering 59(5), 2020: 054106. https://doi.org/ 10.1117/1.OE.59.5.054106
  • [17] SUN S., CAO Y., CHEN C., FU G., WANG Y., XU X., A method for measuring the quality parameters of image intensifier based on projecting phase-shifting gratings, Optica Applicata 48(1), 2018: 39-51. https://doi.org/10.5277/OA180104
  • [18] https://en.wikipedia.org/wiki/Image_intensifier (accessed 2023).
  • [19] https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/ 99_SALES_LIBRARY/etd/II_TII0007E.pdf (accessed 2023).
  • [20] https://www.photek.com/wp-content/uploads/2021/09/PH-DS001-ImageIntensifiers-Rev04Sept21.pdf (accessed 2023).
  • [21] CHRZANOWSKI K., Evaluation of infrared collimators for testing thermal imaging systems, Opto-Electronics Review 15(2), 2007: 82-87. https://doi.org/10.2478/s11772-007-0005-9
  • [22] GOST 15114-78, Telescope system for optical devices. Visual method of resolution limits determination, 1979.
  • [23] ISO 14490-7:2016, Optics and photonics — Test methods for telescopic systems — Part 7: Test methods for limit of resolution, 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d17a8651-7ae7-49c9-8edd-36e2a9bbf506
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.