Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, maleic anhydride (MA) was grafted onto methyl cellulose (MC) and then reacted with acrylic acid to synthesize a high gel strength and fast water absorption resin (AA-co-MC-g-MA) by UV polymerization. The reaction conditions of maleylated methylcellulose (MC-g-MA) were investigated, including the ratio of MC to MA, reaction time and catalyst amount. In addition, the reaction conditions for the synthesis of super absorbent resin were as follows: the amount of MC-g-MA, the degree of substitution of MC-g-MA, polymerization time, and the amount of initiator. Under optimal conditions, the maximum water absorption volume of synthetic resin was 2116 g/g, and the maximum salt absorption rate was 139 g/g. The water absorption resin prepared this time had high water absorption, water retention, excellent pH sensitivity, etc. It was hoped that it will have a good application prospect in the field of industrial production and agriculture in the future.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
34--41
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Xinjiang University, College of Chemistry and Chemical Engineering, Urumqi, 830046, China
autor
- Xinjiang University, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Urumqi, 830046, China
autor
autor
autor
Bibliografia
- 1. Shen, Y., Oki, T., Kanae, S., Hanasaki, N., Utsumi, N. & Kiguchi, M. (2014). Projection of future world water resources under sres scenarios: an integrated assessment. Hydrolog.. Sci. J. 59(10), 1775–1793. DOI: 10.1080/02626667.2013. 862338.
- 2. Jiang, Y.L., Chen, Y.S., Younos, T. , Huang, H.Q. & He, J.P. (2010). Urban water resources quota management: the core strategy for water demand management in china. Ambio. 39(7), 467–475. DOI: 10.1007/s13280-010-0080-x.
- 3. Zhang, W., Zhou, J., Feng, G., Weindorf, D.C., Hu, G. & Sheng, J. (2015). Characteristics of water erosion and conservation practice in arid regions of Central Asia: Xinjiang Province, China as an example. J. Soil. Water. Conserw. 3(2), S2095633915300617. DOI: 10.1016/j.iswcr.2015.06.002.
- 4. Wang, C.F., Li, X.F., Zhang, X.L., Ma, X.L. & Feng, M.X. (2019). Research progress on application of water retention agent in agricultural production. Modern Agric. Sci. Technol. 12. DOI: not given.
- 5. Huo, Q., Liu, D., Zhao, J., Li, J., Chen, R. & Liu, S. (2017). Construction and water absorption capacity of a 3D network-structure starch-g-poly (sodium acrylate)/PVP semi--IPN superabsorbent resin. Starch. 69, 11–12. DOI: 10.1002/star. 201700091.
- 6. Chen, Y., Liu, Y.F., Tan, H.M. & Jiang, J.X. (2009). Synthesis and characterization of a novel superabsorbent polymer of N, O - carboxymethyl chitosan graft copolymer- ized with vinyl monomers. Carbohydr. Polym.75(2), 287–292. DOI: 10.1016/j.car bpo l.2008.07.022.
- 7. Bao, Y., Ma, J. & Li, N. (2011). Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM--co-AMPS)/MMT superabsorbent hydro-gel. Carbohydr. Polym. 84(1), 76–82. DOI: 10.1016/j.carbpol.2010.10.061.
- 8. Lan, GH., Zhang, M., Liu, YQ., Qiu, H., Xue, S., Zhang, T. & Xu, Q. (2019). Synthesis and Swelling Behavior of Super-Absorbent Soluble Starch-g-poly (AM-co-NaAMC 14 S) Through Graft Copolymerization and Hydrolysis. Starch. 71, 1800272. DOI: 10.1002/star.201800272.
- 9. Huacai, G., Wan, P. & Dengke, L. (2006). Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydr. Polym. 66(3), 372–378. DOI: 10.1016/j.carbpol.2006.03.017.
- 10. Jian, Q., Marie, R.S., Niemeyer, M.J., Schueler, K.R., Hurley, S.M. & Sawyer, L.H. (2003). Patent No. EP1622654. Publ. of Application without search report – European Patent Office.
- 11. Tang, Y., Wang, X. & Zhu, L. (2013). Removal of methyl orange from aqueous solutions with poly(acrylic acid-co-acrylamide) superabsorbent resin. Polym. Bull. 70(3), 905–918. DOI: 10.1007/s00289-013-0910-7.
- 12. Li, J., Zhang, K., Zhang, M., Fang, Y., Chu, X. & Xu, Lu. (2017). Fabrication of a fast:welling superabsorbent resin by inverse suspension polymerization. J. Appl. Polym. Sci. 135, 46142. DOI: 10.1002/app.46142.
- 13. Rashidzadeh, A. & Olad, A. (2014).Slow-released NPK fertilizer encapsulated by NaAlg -g- poly(AA- co -AAm)/MMT superabsorbent nanocomposite. Carbohydr. Polym.114, 269–278. DOI: 10.1016/j.carbpol.2014.08.010.
- 14. Gawande, N. & Mungray, A.A. (2015). Superabsorbent polymer (sap) hydrogels for protein enrichment. Sep. Purif. Technol. 150, 86–94. DOI: 10.1016/j.seppur.2015. 04.024.
- 15. Lee, H.X.D., Wong, H.S. & Buenfeld, NR. (2016). Self-sealing of cracks in concrete using superabsorbent polymers. Cement. Concrete. Res. 79, 194–208. DOI: 10.1016/j.cemconres.2015.09.008.
- 16. Peng, N., Wang, Y., Ye, Q., Liang, L., An, Y., Li, Q. & Chang, C. (2016). Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr. Polym. 137, 59–64. DOI: 10.1016/j.carbpol.2015.10.057.
- 17. Ganhui, H., Qianhui, G.U. & Zhenyu, G.U. (2012). Optimization on preparation technology of super absorbent resin polymerized by microwave with gelatinized starch from canna edulisker and acrylic acid through response surface methodology. Food Sci. 33(10), 124–130.DOI: not given.
- 18. Blaker, J.J., Lee, K.Y. & Bismarck, A. (2011). Hierarchical composites made entirely from renewable resources. J. Biobased Mater. Bio. 5(1), 1–16. DOI: 10.1166/jbmb.2011.1113.
- 19. Lam, Y.C., Joshi, S.C. & Tan, B.K. (2007). Thermodynamic characteristics of gelation for methyl-cellulose hydrogel S. J. Therm. Anal. Cal. 87(2), 475–482. DOI: 10.1007/s10973-006-772 2-z.
- 20. Fang, Z., Zhang, X., Xia, M., Luo, W., Hu, H.,Wang, Z., He, P. & Zhang, Y. (2018). The role of synthetic P (MMAco- MAH) as compatibilizer in the preparation of chlorinated polyethylene/polysodium acrylate water-swelling rubber. Adv. Polym. Tech. 37, 3650–3658. DOI: 10.1002/adv.22149.
- 21. Roy, D., Semsarilar, M., Guthrie, J. & Perrier, S. (2009). Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 38(7), 2046–2064. DOI: 10.1039/ b 808639g.
- 22. Yimit, M., Sawut, A., Nurulla, I., Shi, Q.D. & Xu, W.T. (2016). UV polymerization and characterization of selfcrosslinking polyacrylic acid super-absorbent. J. Funct. Mater. 4(47), 04182–04186. DOI: 10.3969/j.issn.100-9731. 2016.04.037.
- 23. Cheng, D.D., Liu, Y., Yang, G.T. & Zhang, A.P. (2018). Water- and Fertilizer-Integrated Hydrogel Derived from the Polymerization of Acrylic Acid and Urea as a Slow-Release N Fertilizer and Water Retention in Agriculture. J. Agric. Food Chem. 66, 5762−5769. DOI: 10.1021/acs.jafc.8b00872.
- 24. Hisham A., E., Ghazy, M.B.M., Mohamed, M.F. & El-Hai, F.A. (2016). Super-absorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Internat. J. Biolog. Macromolec. 89, 144–151. DOI: 10.1016/j.ijbiomac.2016.04.071..
- 25. Shi, Q., Meng, Q.L. & Wang, N. (2014). The Preparation of Calcium Carbonate Modified High Water-Absorbing Resin. Adv. Mater. Res. 1035, 296–302. DOI: 10.4028/www.scientific.net/amr.1035.296.
- 26. Zhang, H.N., Ren, H., Qian, S. & Zhai, H. (2019). Effects of different lignins on absorption properties and pore structure of polyacrylic acid resin. Wood Sci. Technol. 53, 1001–1014. DOI: 10.1007/s00226-019-01116-w.
- 27. OU, S.J. (2014). The synthesis of maleic anhydride-acrylic salt tolerance of supper water-absorbent resin. Appl. Chem. Ind. 43(4), 670–672. DOI: 10. 16581/j.cnki.issn1671-3206.2014.04.025.
- 28. Sawut, A., Yimit, M., Wanfu, S. & Nurulla, I. (2014). Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer. Carbohydr. Polym. 101, 231–239. DOI: 10.1016/j.carbpol.2013.09.054.
- 29. Liu, L., Sawut, A., Abliz, S., Nurulla, I., Dolat, B. & Yimit, M. (2016). Ultraviolet-induced polymerization of superabsorbent composites based on sodium humate and its urea release behavior. RSC. Adv. 6, 101123–101132. DOI: 10.1039/c6 ra21911j.
- 30. de Carvalho Oliveira, G., Filho, G.R., Vieira, J.G., De Assunção, R.M.N., da Silva Meireles, C., Cerqueira, D.A., de Oliveira, R.J., Silva, W.G. & de Castro Motta, L.A. (2010). Synthesis and application of methylcellulose extracted from waste newspaper in cpv-ariportland cement mortars. J. Appl. Polym. Sci. 118(3), 1380–1385. DOI: 10.1002/app.32477.
- 31. Li, L., Chu, L.K., Huang, W.H., Yue, L. & Yang, Z.S. (2014). Radiation synthesis and the post-processing of a new salt resistance SAR. Nuclear Techniques. 37(7), 070301. DOI: 10.11889/j.0253-3219.2014.hjs.37.070301.
- 32. Song, X.F., Zhang, D. & He, T.S.(2012).Synthesis and Characterization of Water Absorbent Resin of Poly(AA-AANa--AM) with Redox Initiation System. J. Building Mater. 15(4), 0494–0497. DOI: 10.3969/j. issn.1007-9629.2012. 04.011.
- 33. Dolat, B., Sawut, A., Yimit, M. & Nurulla, I. (2015). Ultraviolet photopolymerization and performances of fast-water absorbing sodium polyacrylate. J. Appl. Polym. Sci. 132(46), 1–6. DOI: 10.1002/app.42787.
- 34. Tian, Y.C., Zhao, M.Q., Mi, H.Y., Li, G.Y. & Nurulla, I. (2012). Synthesis of acrylic acid-polyethylene glycol-humic acid composite water absorbent resin. China Synthetic Resin Plastics, 29(6),71–76. DOI: not given.
- 35. Bao, Y., Ma, J.Z. & Li, N.(2010). Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co--AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr. Polym. 84 (2011) ,76–82. DOI: 10.1016/j.carbpol.2010.10.061.
- 36. Zhang, P., Liang, J.F., Xie, J.J. & Liu, X.R. (2007). The influence of pH value on the absorbent property of super absorbent resin (acrylate – acrylamide). Natural Sci. J. Xiangtan Univ. 29(4), 63–66. DOI: 10.13715/j.cnki. nsjxu. 2007.04.010.
- 37. Tian, Y.C., Li, G.Y. & Nurulla, I.(2013). Synthesis of acrylic acid-starch-humic acid absorbent resin. China Synthetic Resin Plastics, 30(2), 42–47. DOI: not given.
- 38. Rashidzadeh, A., Olad, A., Salari, D. & Reyhanitabar, A. (2014). On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-Poly(acrylic acid-co-acrylamide)/Clinoptilolite and its application as slow release fertilizer. J. Polym. Res. 21, 344. DOI: 10.1007/s10965-013-0344-9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d179337c-579f-4973-b540-eceb669186bd