PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

UV polymerization and property analysis of maleacylated methyl cellulose acrylic acid absorbent resin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, maleic anhydride (MA) was grafted onto methyl cellulose (MC) and then reacted with acrylic acid to synthesize a high gel strength and fast water absorption resin (AA-co-MC-g-MA) by UV polymerization. The reaction conditions of maleylated methylcellulose (MC-g-MA) were investigated, including the ratio of MC to MA, reaction time and catalyst amount. In addition, the reaction conditions for the synthesis of super absorbent resin were as follows: the amount of MC-g-MA, the degree of substitution of MC-g-MA, polymerization time, and the amount of initiator. Under optimal conditions, the maximum water absorption volume of synthetic resin was 2116 g/g, and the maximum salt absorption rate was 139 g/g. The water absorption resin prepared this time had high water absorption, water retention, excellent pH sensitivity, etc. It was hoped that it will have a good application prospect in the field of industrial production and agriculture in the future.
Rocznik
Strony
34--41
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Xinjiang University, College of Chemistry and Chemical Engineering, Urumqi, 830046, China
  • Xinjiang University, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Urumqi, 830046, China
autor
autor
Bibliografia
  • 1. Shen, Y., Oki, T., Kanae, S., Hanasaki, N., Utsumi, N. & Kiguchi, M. (2014). Projection of future world water resources under sres scenarios: an integrated assessment. Hydrolog.. Sci. J. 59(10), 1775–1793. DOI: 10.1080/02626667.2013. 862338.
  • 2. Jiang, Y.L., Chen, Y.S., Younos, T. , Huang, H.Q. & He, J.P. (2010). Urban water resources quota management: the core strategy for water demand management in china. Ambio. 39(7), 467–475. DOI: 10.1007/s13280-010-0080-x.
  • 3. Zhang, W., Zhou, J., Feng, G., Weindorf, D.C., Hu, G. & Sheng, J. (2015). Characteristics of water erosion and conservation practice in arid regions of Central Asia: Xinjiang Province, China as an example. J. Soil. Water. Conserw. 3(2), S2095633915300617. DOI: 10.1016/j.iswcr.2015.06.002.
  • 4. Wang, C.F., Li, X.F., Zhang, X.L., Ma, X.L. & Feng, M.X. (2019). Research progress on application of water retention agent in agricultural production. Modern Agric. Sci. Technol. 12. DOI: not given.
  • 5. Huo, Q., Liu, D., Zhao, J., Li, J., Chen, R. & Liu, S. (2017). Construction and water absorption capacity of a 3D network-structure starch-g-poly (sodium acrylate)/PVP semi--IPN superabsorbent resin. Starch. 69, 11–12. DOI: 10.1002/star. 201700091.
  • 6. Chen, Y., Liu, Y.F., Tan, H.M. & Jiang, J.X. (2009). Synthesis and characterization of a novel superabsorbent polymer of N, O - carboxymethyl chitosan graft copolymer- ized with vinyl monomers. Carbohydr. Polym.75(2), 287–292. DOI: 10.1016/j.car bpo l.2008.07.022.
  • 7. Bao, Y., Ma, J. & Li, N. (2011). Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM--co-AMPS)/MMT superabsorbent hydro-gel. Carbohydr. Polym. 84(1), 76–82. DOI: 10.1016/j.carbpol.2010.10.061.
  • 8. Lan, GH., Zhang, M., Liu, YQ., Qiu, H., Xue, S., Zhang, T. & Xu, Q. (2019). Synthesis and Swelling Behavior of Super-Absorbent Soluble Starch-g-poly (AM-co-NaAMC 14 S) Through Graft Copolymerization and Hydrolysis. Starch. 71, 1800272. DOI: 10.1002/star.201800272.
  • 9. Huacai, G., Wan, P. & Dengke, L. (2006). Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydr. Polym. 66(3), 372–378. DOI: 10.1016/j.carbpol.2006.03.017.
  • 10. Jian, Q., Marie, R.S., Niemeyer, M.J., Schueler, K.R., Hurley, S.M. & Sawyer, L.H. (2003). Patent No. EP1622654. Publ. of Application without search report – European Patent Office.
  • 11. Tang, Y., Wang, X. & Zhu, L. (2013). Removal of methyl orange from aqueous solutions with poly(acrylic acid-co-acrylamide) superabsorbent resin. Polym. Bull. 70(3), 905–918. DOI: 10.1007/s00289-013-0910-7.
  • 12. Li, J., Zhang, K., Zhang, M., Fang, Y., Chu, X. & Xu, Lu. (2017). Fabrication of a fast:welling superabsorbent resin by inverse suspension polymerization. J. Appl. Polym. Sci. 135, 46142. DOI: 10.1002/app.46142.
  • 13. Rashidzadeh, A. & Olad, A. (2014).Slow-released NPK fertilizer encapsulated by NaAlg -g- poly(AA- co -AAm)/MMT superabsorbent nanocomposite. Carbohydr. Polym.114, 269–278. DOI: 10.1016/j.carbpol.2014.08.010.
  • 14. Gawande, N. & Mungray, A.A. (2015). Superabsorbent polymer (sap) hydrogels for protein enrichment. Sep. Purif. Technol. 150, 86–94. DOI: 10.1016/j.seppur.2015. 04.024.
  • 15. Lee, H.X.D., Wong, H.S. & Buenfeld, NR. (2016). Self-sealing of cracks in concrete using superabsorbent polymers. Cement. Concrete. Res. 79, 194–208. DOI: 10.1016/j.cemconres.2015.09.008.
  • 16. Peng, N., Wang, Y., Ye, Q., Liang, L., An, Y., Li, Q. & Chang, C. (2016). Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr. Polym. 137, 59–64. DOI: 10.1016/j.carbpol.2015.10.057.
  • 17. Ganhui, H., Qianhui, G.U. & Zhenyu, G.U. (2012). Optimization on preparation technology of super absorbent resin polymerized by microwave with gelatinized starch from canna edulisker and acrylic acid through response surface methodology. Food Sci. 33(10), 124–130.DOI: not given.
  • 18. Blaker, J.J., Lee, K.Y. & Bismarck, A. (2011). Hierarchical composites made entirely from renewable resources. J. Biobased Mater. Bio. 5(1), 1–16. DOI: 10.1166/jbmb.2011.1113.
  • 19. Lam, Y.C., Joshi, S.C. & Tan, B.K. (2007). Thermodynamic characteristics of gelation for methyl-cellulose hydrogel S. J. Therm. Anal. Cal. 87(2), 475–482. DOI: 10.1007/s10973-006-772 2-z.
  • 20. Fang, Z., Zhang, X., Xia, M., Luo, W., Hu, H.,Wang, Z., He, P. & Zhang, Y. (2018). The role of synthetic P (MMAco- MAH) as compatibilizer in the preparation of chlorinated polyethylene/polysodium acrylate water-swelling rubber. Adv. Polym. Tech. 37, 3650–3658. DOI: 10.1002/adv.22149.
  • 21. Roy, D., Semsarilar, M., Guthrie, J. & Perrier, S. (2009). Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 38(7), 2046–2064. DOI: 10.1039/ b 808639g.
  • 22. Yimit, M., Sawut, A., Nurulla, I., Shi, Q.D. & Xu, W.T. (2016). UV polymerization and characterization of selfcrosslinking polyacrylic acid super-absorbent. J. Funct. Mater. 4(47), 04182–04186. DOI: 10.3969/j.issn.100-9731. 2016.04.037.
  • 23. Cheng, D.D., Liu, Y., Yang, G.T. & Zhang, A.P. (2018). Water- and Fertilizer-Integrated Hydrogel Derived from the Polymerization of Acrylic Acid and Urea as a Slow-Release N Fertilizer and Water Retention in Agriculture. J. Agric. Food Chem. 66, 5762−5769. DOI: 10.1021/acs.jafc.8b00872.
  • 24. Hisham A., E., Ghazy, M.B.M., Mohamed, M.F. & El-Hai, F.A. (2016). Super-absorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Internat. J. Biolog. Macromolec. 89, 144–151. DOI: 10.1016/j.ijbiomac.2016.04.071..
  • 25. Shi, Q., Meng, Q.L. & Wang, N. (2014). The Preparation of Calcium Carbonate Modified High Water-Absorbing Resin. Adv. Mater. Res. 1035, 296–302. DOI: 10.4028/www.scientific.net/amr.1035.296.
  • 26. Zhang, H.N., Ren, H., Qian, S. & Zhai, H. (2019). Effects of different lignins on absorption properties and pore structure of polyacrylic acid resin. Wood Sci. Technol. 53, 1001–1014. DOI: 10.1007/s00226-019-01116-w.
  • 27. OU, S.J. (2014). The synthesis of maleic anhydride-acrylic salt tolerance of supper water-absorbent resin. Appl. Chem. Ind. 43(4), 670–672. DOI: 10. 16581/j.cnki.issn1671-3206.2014.04.025.
  • 28. Sawut, A., Yimit, M., Wanfu, S. & Nurulla, I. (2014). Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer. Carbohydr. Polym. 101, 231–239. DOI: 10.1016/j.carbpol.2013.09.054.
  • 29. Liu, L., Sawut, A., Abliz, S., Nurulla, I., Dolat, B. & Yimit, M. (2016). Ultraviolet-induced polymerization of superabsorbent composites based on sodium humate and its urea release behavior. RSC. Adv. 6, 101123–101132. DOI: 10.1039/c6 ra21911j.
  • 30. de Carvalho Oliveira, G., Filho, G.R., Vieira, J.G., De Assunção, R.M.N., da Silva Meireles, C., Cerqueira, D.A., de Oliveira, R.J., Silva, W.G. & de Castro Motta, L.A. (2010). Synthesis and application of methylcellulose extracted from waste newspaper in cpv-ariportland cement mortars. J. Appl. Polym. Sci. 118(3), 1380–1385. DOI: 10.1002/app.32477.
  • 31. Li, L., Chu, L.K., Huang, W.H., Yue, L. & Yang, Z.S. (2014). Radiation synthesis and the post-processing of a new salt resistance SAR. Nuclear Techniques. 37(7), 070301. DOI: 10.11889/j.0253-3219.2014.hjs.37.070301.
  • 32. Song, X.F., Zhang, D. & He, T.S.(2012).Synthesis and Characterization of Water Absorbent Resin of Poly(AA-AANa--AM) with Redox Initiation System. J. Building Mater. 15(4), 0494–0497. DOI: 10.3969/j. issn.1007-9629.2012. 04.011.
  • 33. Dolat, B., Sawut, A., Yimit, M. & Nurulla, I. (2015). Ultraviolet photopolymerization and performances of fast-water absorbing sodium polyacrylate. J. Appl. Polym. Sci. 132(46), 1–6. DOI: 10.1002/app.42787.
  • 34. Tian, Y.C., Zhao, M.Q., Mi, H.Y., Li, G.Y. & Nurulla, I. (2012). Synthesis of acrylic acid-polyethylene glycol-humic acid composite water absorbent resin. China Synthetic Resin Plastics, 29(6),71–76. DOI: not given.
  • 35. Bao, Y., Ma, J.Z. & Li, N.(2010). Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co--AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr. Polym. 84 (2011) ,76–82. DOI: 10.1016/j.carbpol.2010.10.061.
  • 36. Zhang, P., Liang, J.F., Xie, J.J. & Liu, X.R. (2007). The influence of pH value on the absorbent property of super absorbent resin (acrylate – acrylamide). Natural Sci. J. Xiangtan Univ. 29(4), 63–66. DOI: 10.13715/j.cnki. nsjxu. 2007.04.010.
  • 37. Tian, Y.C., Li, G.Y. & Nurulla, I.(2013). Synthesis of acrylic acid-starch-humic acid absorbent resin. China Synthetic Resin Plastics, 30(2), 42–47. DOI: not given.
  • 38. Rashidzadeh, A., Olad, A., Salari, D. & Reyhanitabar, A. (2014). On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-Poly(acrylic acid-co-acrylamide)/Clinoptilolite and its application as slow release fertilizer. J. Polym. Res. 21, 344. DOI: 10.1007/s10965-013-0344-9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d179337c-579f-4973-b540-eceb669186bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.