Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The noises associated with MEMS measurements can significantly impact their accuracy. The noises characterised by random walk and bias instability errors strictly depend on temperature effects that are difficult to specify during direct measurements. Therefore, the paper aims to estimate the fractional noise dynamics of the stationary MEMS gyroscope based on finite length triple estimation algorithm (FLTEA). The paper deals with the state, order and parameter estimation of fractional order noises originating from the MEMS gyroscope, being part of the popular Inertial Measurement Unit denoted as SparkFun MPU9250. The noise measurements from 𝑥,𝑦 and 𝑧 gyroscope axes are identified using a modified triple estimation algorithm (TEA) with finite approximation length. The TEA allows a simultaneous estimation of the state, order and parameter of fractional order systems. Moreover, as it is well-known that the number of samples in fractional difference approximations plays a key role, we try to show the influence of applying the TEA with various approximation length constraints on final estimation results. The validation of finite length TEA in the noise estimation process coming from MEMS gyroscope has been conducted for implementation length reduction achieving 50% of samples needed to estimate the noise with no implementation losses. Additionally, the capabilities of modified TEA in the analysis of fractional constant and variable order systems are confirmed in several numerical examples.
Czasopismo
Rocznik
Tom
Strony
219--229
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Control and Industrial Electronics, Warsaw University of Technology, ul. Koszykowa 75, 00–662 Warsaw, Poland
autor
- Institute of Control and Industrial Electronics, Warsaw University of Technology, ul. Koszykowa 75, 00–662 Warsaw, Poland
Bibliografia
- 1. Samko SG, Kilbas AA, Maritchev OI. Fractional Integrals and Deriva-tive. Theory and Applications. Gordon & Breach Sci. Publishers; 1987.
- 2. Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differenctial Equations. New York, USA: John Wiley & Sons Inc.; 1993.
- 3. Monje CA, Chen Y, Vinagre BM, Xue D, Fe-liu V. Fractional-order Systems and Controls.London. UK: Springer; 2010.
- 4. Podlubny I. Fractional Differential Equations. Academic Press; 1999.
- 5. Magin R, Ortigueira MD, Podlubny I, Trujillo J. On the fractional signals and systems. Signal Processing. 2011;91(3):350 371. Ad-vances in Fractional Signals and Systems.
- 6. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Math-ematics Studies). USA: Elsevier Science Inc. 2006.
- 7. West BJ. Fractional Calculus and the Future of Science. Entropy. 2021;23(12). https://www.mdpi.com/1099-4300/23/12/1566
- 8. Anastassiou GA. Generalized Fractional Calculus. Springer. Cham. 2021.
- 9. Yang XJ. General Fractional Derivatives: Theory, Methods and Applications. Chapman and Hall/CRC; 2019.
- 10. Tarasov VE. Generalized Memory: Fractional Calculus Approach. Fractal and Fractional. 2018;2(4).https://www.mdpi.com/2504-3110/2/4/23.
- 11. Sierociuk D, Dzielinski A, Sarwas G, Petras I, Podlubny I, Skovranek T. Modelling heat transfer in heterogeneous media using fractional calculus. Philosophical Transactions of the Royal Society A: Mathe-matical, Physical and Engineering Sciences. 2013;371(1990).
- 12. Sakrajda P, Sierociuk D. Modeling Heat Transfer Process in Grid-Holes Structure Changed in Time Using Fractional Variable Order Calculus. In: Babiarz A, Czornik A, Klamka J, Niezabitowski M, edi-tors. Theory and Applications of Non-integer Order Systems. Cham: Springer International Publishing. 2017: 297-306.
- 13. Reyes-Melo ME, Martinez-Vega JJ, Guerrero-Salazar CA, Ortiz-Mendez U. Application of fractional calculus to modelling of relaxa-tion phenomena of organic dielectric materials. In: Proceedings of In-ternational Conference on Solid Dielectrics. Toulouse. France: 2004.
- 14. Dzielinski A, Sierociuk D, Sarwas G. Some applications of fractional order calculus. Bulletin of The Polish Academy of Sciences – Tech-nical Sciences. 2010;58(4):583-92.
- 15. Ortigueira MD, Val ́erio D. Fractional Signals and Systems. De Gruyter; 2020. https://doi.org/10.1515/9783110624588.
- 16. Sheng H, Chen Y, Qiu T. Fractional Processes and Fractional-Order Signal Processing. Springer. London; 2012.
- 17. Muresan CI, Birs IR, Dulf EH, Copot D, Miclea L. A Review of Recent Advances in Fractional-Order Sensing and Filtering Techniques. Sensors. 2021;21(17). Available from: https://www.mdpi.com/1424-8220/21/17/5920.
- 18. Sierociuk D, Tejado I, Vinagre BM. Improved fractional Kalman filter and its application to estimation over lossy networks. Signal Pro-cessing. 2011 MAR;91(3, SI):542-52.
- 19. Sierociuk D. Fractional Kalman Filter algorithms for correlated sys-tem and measurement noises. Control and Cybernetics. 2013;42(2):471-90.
- 20. Sierociuk D, Ziubinski P. Variable order fractional Kalman filters for estimation over lossy network. Lecture Notes in Electrical Engineer-ing. 2015;320:285-94.
- 21. Wyss W. Fractional noise. Foundations of Physics Letters. 1991;4: 235–246.
- 22. Sierociuk D, Ziubinski P. Fractional order estimation schemes for fractional and integer order systems with constant and variable frac-tional order colored noise. Circuits, Systems, and Signal Processing. 2014;33(12):3861-82. DOI:10.1007/s00034-014-9835-0.
- 23. Sierociuk D, Macias M. Triple Estimation of Fractional Variable Order, Parameters, and State Variables Based on the Unscented Fractional Order Kalman Filter. Sensors. 2021;21(23). Available from: https://www.mdpi.com/1424-8220/21/23/8159.
- 24. Macias M, Sierociuk D, Malesza W. MEMS Accelerometer Noises Analysis Based on Triple Estimation Fractional Order Algorithm. Sensors. 2022;22(2).
- 25. Stanislawski R, Latawiec KJ, Lukaniszyn M, Galek M. Time-domain approximations to the Grunwald-Letnikov difference with application to modeling of fractional-order state space systems. In: 2015 20th In-ternational Conference on Methods and Models in Automation and Robotics (MMAR). 2015: 579-84.
- 26. Stanislawski R, Hunek WP, Latawiec KJ. Finite approximations of a discrete-time fractional derivative. In: 2011 16th International Confer-ence on Methods Models in Automation Robotics. 2011:142-5.
- 27. Sierociuk D, Malesza W, Macias M. Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Ap-plied Mathematical Modelling. 2015;39(13):3876-88. http://dx.doi.org/10.1016/j.apm.2014.12.009.
- 28. Sierociuk D, Malesza W, Macias M. On the Recursive Fractional Variable-Order Derivative: Equivalent Switching Strategy, Duality, and Analog Modeling. Circuits, Systems, and Signal Processing. 2015;34(4):1077-113.
- 29. Macias M, Sierociuk D. An alternative recursive fractional variable-order derivative definition and its analog validation. In: Proceedings of International Conference on Fractional Differentiation and its Ap-plications. Catania, Itally; 2014.
- 30. Ziubinski P, Sierociuk D. Fractional order noise identification with application to temperature sensor data. In: Circuits and Systems (IS-CAS), 2015 IEEE International Symposium on; 2015: 2333-6.
- 31. Sierociuk D, Malesza W. Fractional variable order discrete-time systems, their solutions and properties. International Journal of Sys-tems Science. 2017;48(12):3098-105.
- 32. Haykin S. Kalman Filtering and Neural Networks. John Wiley & Sons, Inc.: New York, USA; 2001.
- 33. Sierociuk D. Fractional Variable Order Derivative Simulink Toolkit; 2012. http://www.mathworks.com/matlabcentral/fileexchange/38801-fractional-variable-order-derivative-simulink-toolkit
- 34. Wu B, Cao X. Robust Attitude Tracking Control for Spacecraft with Quantized Torques. IEEE Transactions on Aerospace and Electronic Systems. 2017;11:1-1.
- 35. Wang Y, Yang X, Yan H. Reliable Fuzzy Tracking Control of Near-Space Hypersonic Vehicle Using Aperiodic Measurement Infor-mation. IEEE Transactions on Industrial Electronics. 2019;66(12):9439-47.
- 36. Sulochana S, Hablani H. Precision Munition Guidance and Moving-Target Estimation. Journal of Guidance, Control, and Dynamics. 2016;39:1-12.
- 37. Xingling S, Shi Y, Wendong Z. Input-and-Measurement Event-Triggered Output Feedback Chattering Reduction Control for MEMS Gyroscopes. IEEE Transactions on Systems, Man,and Cybernetics: Systems. 2021.
- 38. Xingling S, Shi Y, Wendong Z, Cao H, Jiawei L. Neurodynamic Approximation-Based Quantized Control with Improved Transient Performances for MEMS Gyroscopes: Theory and Experimental Re-sults. IEEE Transactions on Industrial Electronics. 2020.
- 39. Xingling S, Shi Y. Neural-Network-Based Constrained Output-Feedback Control for MEMS Gyroscopes Considering Scarce Transmission Bandwidth. IEEE Transactions on Cybernetics. 2022.
- 40. Xingling S, Si H, Zhang W. Fuzzy wavelet neural control with im-proved prescribed performance for MEMS gyroscope subject to input quantization. Fuzzy Sets and Systems. 2020;411.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d177908c-3e5f-4905-a4af-944bf4ff1227