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Abstract: The noises associated with MEMS measurements can significantly impact their accuracy. The noises characterised by random 
walk and bias instability errors strictly depend on temperature effects that are difficult to specify during direct measurements. Therefore,  
the paper aims to estimate the fractional noise dynamics of the stationary MEMS gyroscope based on finite length triple estimation  
algorithm (FLTEA). The paper deals with the state, order and parameter estimation of fractional order noises originating from the MEMS 
gyroscope, being part of the popular Inertial Measurement Unit denoted as SparkFun MPU9250. The noise measurements from 𝑥, 𝑦 and 𝑧 

gyroscope axes are identified using a modified triple estimation algorithm (TEA) with finite approximation length. The TEA allows  
a simultaneous estimation of the state, order and parameter of fractional order systems. Moreover, as it is well-known that the number  
of samples in fractional difference approximations plays a key role, we try to show the influence of applying the TEA with various  
approximation length constraints on final estimation results. The validation of finite length TEA in the noise estimation process coming  
from MEMS gyroscope has been conducted for implementation length reduction achieving 50% of samples needed to estimate the noise 
with no implementation losses. Additionally, the capabilities of modified TEA in the analysis of fractional constant and variable order  
systems are confirmed in several numerical examples. 

Key words: fractional calculus, fractional Kalman filter, estimation of fractional order systems, fractional order noise 

1. INTRODUCTION 

The fractional calculus (FC) is, in itself, an extension of tradi-
tional differential and integral calculus. The differential orders in 
FC can be real or even complex numbers. The fractional deriva-
tive appeared for the first time in the correspondence between 
Leibniz and l’Hôpital in 1695, and thereby, it appeared almost 
simultaneously with the integer order calculus. The theoretical 
background for this calculus can be found in several already 
classic works in the literature [1, 2, 3, 4, 6]; additionally, in multiple 
relatively recently published books [7,8], some applications of this 
calculus have been explored. 

The main advantage of fractional order operators in compari-
son to the integer order case is that the fractional order derivatives 
depend not only on local time conditions but also on the whole 
past of the function [10]. This property can be especially useful for 
the description of dynamics possess with a long-term memory 
nature. The FC was found to be especially efficient in modelling 
diffusive systems [11, 12, 13, 14]. For example, in the heat trans-
fer process of the solid beam, it is possible to describe dynamics 
between temperature and heat flux at the desired point as a half-
order integral. When the heated material is not solid (heterogene-
ous), the order of the integration can be different by half, as was 
presented in the study of Sierociuk et al. [11]. 

The FC also allows the construction of new types of filters and 
new tools for signal analysis. Some applications of fractional order 
calculus in signal processing have been presented in the literature 
[5, 15, 16, 17]. For constant and variable fractional order systems, 
some generalisations of the Kalman filter have been presented in 

the studies of Sierociuk et al. [18], Sierociuk [19] and Sierociuk 
and Ziubinski [20]. When the uncorrelated noise (such as white 
noise) passes through a dynamical system, the dynamically corre-
lated noise (coloured noise) is obtained. When the dynamics 
contain fractional order, a fractional noise is obtained. In the study 
of Wyss [21], an introduction is presented to fractional order nois-
es (the noises obtained by applying uncorrelated white noise to 
fractional order dynamics). In the study of Sierociuk and Ziubinski 
[22], estimation schemes are presented for discrete fractional and 
integer order state-space systems with fractional order coloured 
noise. In the latter of these studies, owing to the additional infor-
mation about noise dynamic used by the estimation algorithm 
proposed therein, better estimates of the state vector could be 
obtained. 

The MEMS gyroscope sensors are quite complex dynamical 
systems encompassing non-linear dynamics, external disturb-
ances and thermal noises, especially in high acceleration and 
high-velocity environments such as space crafts [34], hypersonic 
vehicles [35], missiles or munition [36]. The use of advanced 
control algorithms is necessary for a study of the application of 
nonlinearities in MEMS gyroscopes, especially those involving a 
hysteresis of quantisation levels.. For example, neural network 
approaches were used in the studies of Shao et al. [37, 38] and 
Shao and Shi [39]; additionally, in the study of Shao et al. [40], a 
fuzzy wavelet neural control was applied. In this paper, only static 
case noise analysis will be considered, and accordingly the re-
search approach used in the present study would be a special 
case that omits the influence of sensor externally driven dynamics 
and focusses only on modelling thermal and other noises that can 
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be measured when the sensor does not move. Especially, ther-
mal-like noises can be efficiently modelled using fractional order 
models (fractional noises), which is the main motivation for apply-
ing fractional order estimation tools and undertaking investigation 
of static noise cases. 

In practical fractional noise estimation, there is a problem with 
properly determining the parameters and order of the noise. In the 
study of Sierociuk and Macias [23], the triple estimation algorithm 
(TEA) for state vector, order and system parameters’ estimation 
was proposed and described in detail. In the study of Macias et al. 
[24], a triple estimation algorithm was used to carry out identifica-
tion of fractional order noise in MEMS accelerometer measure-
ments. In the practical application of the triple estimation algo-
rithm, it was found that the algorithm requires quite a high numeri-
cal power. The principal difficulty lies in the realisation of fractional 
order differences when the full number of samples is used.The 
problem of direct application of fractional order difference resulting 
in a high numerical power consumption is a well-recognised one 
in the literature, and there have been multiple studies proposing 
other methods characterised by much lower levels of numerical 
power consumption. In Stanisławski et al. [25,26], some types of 
approximations including Laguerre-based differences were pro-
posed and analysed. The most typical method of approximation is 
to reduce the number of samples that are considered, which has 
an influence on derivative accuracy. 

The paper’s novelty lies in its modification of the triple estima-
tion algorithm by introducing a limited number of samples during 
computation. Then, the new algorithm will be applied in the identi-
fication of the state, order and parameter of the gyroscope’s x, y 
and z axes’ noises as part of the Inertial Measuring Unit denoted 
by MPU9250. Moreover, the results will be compared to each 
other considering the various implementation lengths of FLTEA. 
So, in contrast with the approaches used in the studies of 
Sierociuk and Ziubinski [22] and Sierociuk and Macias [23], we 
present the triple estimation algorithm with finite length approxi-
mation and its application to the gyroscope’s noises’ estimation. 
The numerical power consumption of the proposed algorithm has 
also been analysed. 

The remainder of the paper is organised as follows: Section 2 
recalls the fractional noises’ definition and particular fractional 
order definition with finite length approximation. In Section 3, the 
modified TEA with approximation length constraints is presented. 
Finally, Sections 4 and 5 show the possibilities of TEA in several 
numerical examples and during the estimation process of noise 
data originating from the gyroscope’s built-in MEMS technology. 

2. FRACTIONAL CALCULUS AND FRACTIONAL NOISES 

In FC, the three most popular definitions of fractional constant 
order integral and derivative are used, namely, Grünwald–
Letnikov, Riemann–Liouville and Caputo. These definitions pos-
sess different properties and may be applied in various areas of 
engineering. 

In this paper, we use the Grünwald–Letnikov definition, which 
is usually used in discrete systems, as a base for fractional varia-
ble order (FVO) difference definition. Due to the applied nature of 
this work, we will use a discrete approximation of the Grünwald–

Letnikov derivative with a finite (not going to 0) sampling time ℎ. 
Hence, we have the constant order difference definition, which is 
formulated as the following: 

 0Δ𝑘
𝛼𝑥𝑘 ≡ ∑  

𝑘

𝑗=0

1

ℎ𝛼
(−1)𝑗 (

𝛼
𝑗 ) 𝑥𝑘−𝑗, 

where 

(
𝛼
𝑗 ) ≡ {

1  for 𝑗 = 0,
𝛼(𝛼 − 1) … (𝛼 − 𝑗 + 1)

𝑗!
 for 𝑗 > 0,

 

𝛼 ∈ ℝ is a fractional order and ℎ is a time sampling. 
Since the estimation of the order will be processed in time, 

this leads us to variable order operators. Four switching schemes 
and their equivalence to four definitions of FVO derivatives are 
presented in the literature [27, 28, 29]. In our paper, we will use 
the following FVO type of difference: 

 0
𝒜Δ𝑘

𝛼𝑘𝑥𝑘 ≡ ∑  

𝑘

𝑗=0

(−1)𝑗

ℎ𝛼𝑘
(

𝛼𝑘

𝑗 ) 𝑥𝑘−𝑗  

where 𝛼𝑘 ∈ ℝ is FVO. 

3. FRACTIONAL NOISE 

The time-correlated (coloured) noises are the noises that con-
tain a dynamic correlation between the noise samples. Such 
noises can be obtained when some noise (uncorrelated) is passed 
through dynamical systems. For example, electromagnetic field 
noise can induct some current in an electronic circuit, leading to 
some dynamically correlated noise in voltage because of some 
dynamic between current and voltage. When the order of the 
dynamics is an integer, we will have a dynamically correlated 
integer order noise, which the following relation can describe: 

𝑥𝑘+1 = 𝑓𝑥𝑘 + 𝜔𝑘 , 

where 𝑥𝑘  is a time-correlated noise, and 𝜔𝑘  is an uncorrelated 
noise, for example, white Gaussian noise. 

When the dynamics of the system are fractional, for example, 
in temperature transport (for ideal beam temperature is half order 
integral of heat flux [11]), the uncorrelated heat flux noise can lead 
to fractional order dynamically correlated noise in temperature. 
The coloured fractional order noise is given as follows: 

 0Δ𝑘+1
𝛼 𝑥𝑘+1  = 𝑓𝑥𝑘 + 𝜔𝑘

𝑥𝑘+1  = ℎ𝛼  0Δ𝑘+1
𝛼 𝑥𝑘+1

 − ∑  

𝑘+1

𝑗=1

  (−1)𝑗 (
𝛼
𝑗 ) 𝑥𝑘−𝑗+1,

 

where 𝑥𝑘  is a fractional coloured noise, 𝛼 is an order of the noise 

and 𝜔𝑘  is an uncorrelated noise. 
The appearance of FVO noise can be observed in the case 

wherein the fractional order of the dynamical system is character-
ised by changes with time (e.g. when the structure of the heated 
medium changes over time [12]). Depending on the order-
switching manner, different definitions can describe such dynam-

ics. For example, for 𝒜-type definition, we will have the following 
FVO noise dynamics: 
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 0
𝒜Δ𝑘

𝛼𝑘+1𝑥𝑘+1  = 𝑓𝑥𝑘 + 𝜔𝑘

𝑥𝑘+1  = ℎ𝛼𝑘+1 0
𝒜Δ𝑘

𝛼𝑘+1𝑥𝑘+1

 − ∑  

𝑘+1

𝑗=1

  (−1)𝑗 (
𝛼𝑘+1

𝑗 ) 𝑥𝑘−𝑗+1.

 

Identification of the fractional noise in a real application is a 
complex process because we do not know the order and system 
parameters of the noise. We also do not have information about 
dynamically uncorrelated source noise. In the study of Ziubinski 
and Sierociuk [30], an identification algorithm for fractional noise 
was presented, but under the assumption that output noise is the 
only evident fractional order noise. In experimentally obtained 
noises, we would instead acquire a combination of dynamically 
correlated and uncorrelated noises, as the following expression 
describes: 

𝑦𝑘 = 𝑥𝑘 + 𝜈𝑘 . 

That is why, in this article, we use a triple estimation algorithm 
to identify parameters of fractional order noises. 

4. FINITE LENGTH APPROXIMATION 

The definition given by Eq. (2) leads to some implementation 
problems because of the very long tail of samples used for obtain-
ing the value of difference. This resulted in the problems’ charac-
terisation by a high number of numerical operations as well as a 
high degree of memory consumption. In the literature there exist 
several algorithms using which to arrive at a more numerically 
efficient fractional difference approximation, among which the 
studies of Stanisławski et al. [25,26] can be mentioned as prime 
examples. In our paper, we will use the most popular method, 
which involves restricting the number of samples considered to 

some predefined value 𝐿, which will be known as the length of 
implementation. The finite length approximation will have the 
following form: 

 0
𝒜,𝐿Δ𝑘

𝛼𝑘𝑥𝑘 = ∑  

𝐿(𝑘)

𝑗=0

(−1)𝑗

ℎ𝛼𝑘
(

𝛼𝑘

𝑗 ) 𝑥𝑘−𝑗 , 

where 

𝐿(𝑘) = {
𝑘  if 𝑘 < 𝐿
𝐿  if 𝑘 ≥ 𝐿

 

Naturally, this approximation will have an influence in deter-
mining the accuracy of the obtained results, which will depend on 
used sampling time, time constants of the object and used input 
signals. 

5. FINITE LENGTH TRIPLE ESTIMATION ALGORITHM 

The triple estimation algorithm (TEA) allows estimating state 
vector, system parameters and fractional order simultaneously. In 
deploying this algorithm, our main idea is to separate the estima-
tion processes used for states, parameters and orders.This sepa-
ration allows a better adjustment of used filters, making it possible 
to obtain better estimation results. A detailed introduction of TEA 
was presented in the study of Sierociuk and Macias [23]. Here, a 

modification of that algorithm including finite length approximation 
of fractional order differences will be proposed (FLTEA). 

The FLTEA will be defined for the following linear discrete 
fractional variable order state-space (DFVOSS) 𝒜-type system 
[31] with finite length implementation of difference: 

 0
𝒜,𝐿Δ𝑘+1

𝛼𝑘+1𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝜔𝑘,

𝑥𝑘+1 = ℎ𝛼𝑘+1  0
𝒜,𝐿Δ𝑘+1

𝛼𝑘+1𝑥𝑘+1

 − ∑  

𝐿(𝑘)+1

𝑗=1

  (−1)𝑗 (
𝛼𝑘+1

𝑗 ) 𝑥𝑘−𝑗+

𝑦𝑘 = 𝐶𝑥𝑘 + 𝜈𝑘 , 

 

where 𝑢𝑘 ∈ ℝ𝑑 is a system input; 𝑦𝑘 ∈ ℝ𝑝 is a system output; 

𝐴 ∈ ℝ𝑁×𝑁 , 𝐵 ∈ ℝ𝑁×𝑑  and 𝐶 ∈ ℝ𝑝×𝑁 are the state system, 

input and output matrices, respectively; 𝑥𝑘 ∈ ℝ𝑁 is a state vec-

tor; and 𝑁 is a number of state equations. 
In the TEA process, the estimations of the FVO, state varia-

bles and parameters are divided into three estimation actions 

(filters). The first filter, KF𝑥, estimates the state variables’ vector 
�̂�𝑘  based on estimates of order and system parameters corre-

sponding to the other filters, namely KFo and KF𝑤, respectively. 

The second, KF𝑤, estimates the vector of system parameters �̂�𝑘 
based on state variable and order estimates obtained in the re-

maining two filters KF𝑥 and KFo, respectively. The third filter, 

KFo, estimates the FVO with the knowledge of state variable and 
system parameters from filters KF𝑥 and KF𝑤, respectively. The 
scheme of the TEA is given in Fig. 1. 

 
Fig. 1. The triple estimation algorithm scheme 

5.1. Order estimation filter KFo 

For the order estimation problem, the unscented fractional 
variable order Kalman filter with finite length differences imple-
mentation is used. The order changing dynamics is assumed to 
be a constant, given by 

𝛼𝑘+1 = 𝛼𝑘 + 𝜔𝑘
𝑜, 

where 𝜔𝑘
𝑜 is a noise with variance given by matrix 𝑄𝑘

𝑜 . The matrix 

𝑄𝑘
𝑜  represents our knowledge over how big fluctuations in time 

actually are vis-à-vis those that were assumed by us. 



Michal Macias, Dominik Sierociuk                         DOI 10.2478/ama-2023-0025 
Finite Length Triple Estimation Algorithm and its Application to Gyroscope MEMS Noise Identification 

222 

The KFo algorithm equations are given as follows: 

�̃�𝑘  = �̂�𝑘−1,

�̃�𝑘
𝑜  = �̂�𝑘−1

𝑜 + 𝑄𝑘−1
𝑜 ,

�̃�𝑘  = [�̃�𝑘 �̃�𝑘 ± (√(𝐿 + 𝜆)�̃�𝑘
𝑜)

𝑖

] ,

𝒜,𝐿Δ�̃�𝑘,𝑖�̃�𝑘,𝑖
𝑜  = 𝐴(�̂�𝑘−1)�̂�𝑘−1 + 𝐵𝑢𝑘−1,

�̃�𝑘,𝑖
𝑜  = ℎ�̃�𝑘,𝑖𝐿Δ�̃�𝑘,𝑖�̃�𝑘,𝑖

𝑜

 − ∑  

𝐿(𝑘)

𝑗=1

  (−1)𝑗 (
�̃�𝑘,𝑖

𝑗
) �̂�𝑘−𝑗 ,

�̃�𝑘,𝑖
𝑜  = 𝐶�̃�𝑘,𝑖

𝑜 ,

�̃�𝑘
𝑜  = ∑  

2𝐿

𝑖=0

 𝑊(𝑚)�̃�𝑘,𝑖 ,

𝑃𝑦𝑘𝑦𝑘
𝑜  = ∑  

2𝐿

𝑖=1

 𝑊𝑖
(𝑐)

[�̃�𝑖,𝑘 − �̃�𝑘][�̃�𝑖,𝑘 − �̃�𝑘]
𝑇

 +𝑅𝑜,

 

𝑃𝛼𝑘𝑦𝑘
𝑜  = ∑  

2𝐿

𝑖=1

 𝑊𝑖
(𝑐)

[�̃�𝑖,𝑘 − �̃�𝑘][�̃�𝑖,𝑘 − �̃�𝑘]
𝑇

,

𝒦𝑘
𝑜  = 𝑃𝛼𝑘𝑦𝑘

𝑜 (𝑃𝑦𝑘
𝑜 𝑦𝑘)

−1
,

�̂�𝑘  = �̃�𝑘 + 𝒦𝑘
𝑜(𝑦𝑘 − �̃�𝑘

𝑜),

𝑃𝑘
𝑜  = �̂�𝑘

𝑜 − 𝒦𝑘
𝑜𝑃𝑦𝑘

𝑜 𝑦𝑘𝒦𝑘
𝑜 ,

𝑄𝑘
𝑜  = (1 − 𝛿𝑜)𝑄𝑘−1

𝑜

 +𝛿𝑜(𝒦𝑘
𝑜)(𝑦𝑘 − �̃�𝑘

𝑜)(𝑦𝑘 − �̃�𝑘
𝑜)𝑇(𝒦𝑘

𝑜)𝑇 ,

 

where (√(𝐿 + 𝜆)𝑃𝑘)
𝑖
 is 𝑖-th column of matrix square root (e.g. 

Cholesky factorisation), 𝐿 is a dimension of estimated state vector 

(2𝐿 + 1 is a number of sigma points) and coefficients of un-
scented transformation 𝑊 are given by 

𝑊0
(𝑚)

 = 𝜆/(𝐿 + 𝜆),

𝑊0
(𝑐)

 = 𝜆/(𝐿 + 𝜆) + (1 − 𝔄2 + 𝔅),

𝑊𝑖
(𝑚)

 = 𝑊𝑖
(𝑐)

= 1/(2(𝐿 + 𝜆)),

 

where 𝜆 = 𝔄2(𝐿 + 𝜅) − 𝐿, 𝔄 is a coefficient describing the 
width of point expansion during the transformation (in the litera-

ture, this is obtained in the range 1 ≤ 𝔄 ≤ 1𝑒 − 4, and is usual-
ly denoted as 𝛼, but in the present article, since we are using 

order 𝛼, this notation has been changed); 𝜅 is an additional scal-

ing coefficient usually chosen as 3 – L; and 𝔅 is a coefficient that 
corresponds with our knowledge about type of noise, for Gaussian 

noise is chosen as 𝔅 = 2 (in the literature this is usually denoted 

as 𝛽). The 𝛿 coefficient is a ‘forgetting factor’ according to the 
Robbins–Monro stochastic approximation scheme for estimating 
the innovations (see Haykin’s study [32], p. 240). The initial values 

of matrix 𝑃0
𝑜  represent our a priori knowledge about error in 

choosing the initial value of order 𝛼0 (we assume that the initial 
value is different from the original). 

5.2.  State estimation filter KFx 

As the KF𝑥 filter, the fractional variable order Kalman filter al-
gorithm with finite length differences implementation is used, and 
has the following form: 

 0
𝒜,𝐿Δ𝑘+1

�̂�𝑘 �̃�𝑘+1  = 𝐴(�̂�𝑘−1)�̂�𝑘 + 𝐵𝑢𝑘 ,

�̃�𝑘+1  = ℎ�̂�𝑘  0
𝒜,𝐿Δ𝑘+1

�̂�𝑘 �̃�𝑘+1

 

−  ∑  

𝐿(𝑘)+1

𝑗=1

  (−1)𝑗 (
�̂�𝑘

𝑗
) �̂�𝑘+1−𝑗 ,

�̃�𝑘 = (ℎ�̂�𝑘𝐴(�̂�𝑘−1) + �̂�𝑘)𝑃𝑘−1

(ℎ�̂�𝑘𝐴(�̂�𝑘−1) + �̂�𝑘)
𝑇

 +𝑄𝑘−1 + ∑  

𝐿(𝑘)

𝑗=2

 (
�̂�𝑘

𝑗
) 𝑃𝑘−𝑗 (

�̂�𝑘

𝑗
)

𝑇

,

𝐾𝑘  = �̃�𝑘𝐶𝑇(𝐶�̃�𝑘𝐶𝑇 + 𝑅𝑘)
−1

,

�̂�𝑘  = �̃�𝑘 + 𝐾𝑘(𝑦𝑘 − 𝐶�̃�𝑘),

𝑃𝑘  = (𝐼 − 𝐾𝑘𝐶)�̃�𝑘 ,

 

where initial conditions are 

𝑥0 ∈ ℝ𝑁 ,  𝑃0 = E[(�̃�0 − 𝑥0)(�̃�0 − 𝑥0)𝑇], 

and 𝜈𝑘  and 𝜔𝑘  are assumed to be independent with zero ex-
pected value. 

5.3. Parameters estimation filter 𝐊𝐅𝑤 

For KFw filter, another unscented fractional variable order 
Kalman filter with finite implementation of differences is used. The 
dynamics of parameter-change are also assumed to be constant, 
given by 

𝑤𝑘+1 = 𝑤𝑘 + 𝜔𝑘
𝑤 , 

where 𝜔𝑘
𝑤 is a noise with variance given by matrix 𝑄𝑘

𝑤. The equa-

tions of the filter KF𝑤 are very similar to those for filter KFo, and 
the difference is only in the model replica part: 

�̃�𝑘  = �̂�𝑘−1

�̃�𝑘
𝑤  = �̂�𝑘−1

𝑤 + 𝑄𝑘−1
𝑤 ,

�̃�𝑘  = [�̃�𝑘 �̃�𝑘 ± (√(𝐿 + 𝜆)�̃�𝑘
𝑤)

𝑖

] ,

 𝒜,𝐿Δ�̂�𝑘−1�̃�𝑘,𝑖
𝑤  = 𝐴(�̃�𝑘,𝑖)�̂�𝑘−1 + 𝐵𝑢𝑘−1,

�̃�𝑘,𝑖
𝑤  = ℎ�̂�𝑘−1  0

𝒜,𝐿Δ�̂�𝑘−1�̃�𝑘,𝑖
𝑤

 − ∑  

𝐿(𝑘)

𝑗=1

  (−1)𝑗 (
�̂�𝑘−1

𝑗
) �̂�𝑘−𝑗 .

 

Resuming the explanation for TEA, it consists of three sub-
filters requiring separate sets of parameters and initial condi-

tions.Parameters of the order estimation filter KFo are denoted 

with the upper index  𝑜 (e.g. �̃�𝑘
𝑜, 𝑄𝑘−1

𝑜 ), whereas parameters of 

KF𝑤 are denoted with the upper index  𝑤 (e.g., �̃�𝑘
𝑤 , 𝑄𝑘−1

𝑤 ) and 

parameters of KF𝑥 are rendered without an upper index. 

6. IDENTIFICATION AND ANALYSIS OF FRACTIONAL 
VARIABLE ORDER SYSTEM PARAMETERS 

Before we apply the finite length triple estimation algorithm to 
real plant data (noises’ estimation of MEMS sensor), we will pre-
sent the results of some numerical experiments for constant and 
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FVO systems. The one state variable discrete state-space sys-
tem, used in numerical experiments, is given as follows: 

 0
𝒜,𝐿Δ𝑘+1

𝛼𝑘+1𝑥𝑘+1 = 𝑓𝑥𝑘 + 𝑢𝑘 + 𝜔𝑘  (1) 

𝑥𝑘+1 = ℎ𝛼𝑘+1 0
𝒜,𝐿Δ𝑘+1

𝛼𝑘+1𝑥𝑘+1

− ∑  

𝐿(𝑘)+1

𝑗=1

(−1)𝑗 (
𝛼𝑘+1

𝑗 ) 𝑥𝑘−𝑗+1 
(2) 

𝑦𝑘 = 𝑥𝑘 + 𝜈𝑘  (3) 

6.1. Analysis of fractional constant and variable order system 
with input signal known 

The number of samples in the numerical implementation of 
fractional order differences plays a significant role in determining 
the accuracy of the results. Therefore, in this section, we try to 
validate the influence of TEA with finite length approximation on 
final estimation results. We present the TEA with length con-
straints to make a numerical validation of its capabilities in the 
analysis of fractional constant and variable order systems. The 
estimation results were shown for various input signals and order 
functions. So, the problem in this section is formulated as follows: 
Estimate the state, order and parameter of the fractional order 
system with known input signal based on TEA with length con-
straints. The numerical tests were conducted in the 
Matlab/Simulink environment based on the Fractional Variable 
Order Derivative Toolkit [33], with a sample time given as 

ℎ = 0.001 s. The possibilities of the TEA designed with limited 
length were shown in the Examples (1)–(3). The aim of the exam-
ples is to assess the accuracy of the results derived from estima-
tion of the state, order and parameter under various scenarios. 
The Example (1) deals with the fractional constant order system 
with input signal being the sawtooth wave, while the Examples (2) 
and (3) show the behaviour of TEA applied to fractional variable 
order systems for input signal being the sawtooth wave and 
Gaussian noise, respectively. 

To compare the estimation results for various lengths of TEA 
implementation, the Examples (1)–(3) were run with the following, 
individually adjusted parameters: 

 Noises parameters 

E[𝜔𝜔𝑇]  = 10−5,

E[𝜈𝜈𝑇]  = 10−3,
 

 Parameters of KF𝑥 filter 

𝑃0 = [1], 𝑄0 = [10−5],

𝑥0 = [0], 𝑅 = [10−3],
 

 Parameters of KFo filter 

𝑃0
𝑜 = [0.05], 𝑄0

𝑜 = [0.005],

𝛼0 = [1], 𝑅𝑜 = [10−3],

𝔄 = 1, 𝔅 = 2, 𝛿𝑜 = 0.5,

 

 Parameters of KFw filter 

𝑃0
𝑤 = [0.001], 𝑄0

𝑤 = [0.01],

𝑤0 = [0], 𝑅𝑤 = [10−3],

𝔄 = 1, 𝔅 = 2, 𝛿𝑤 = 0.5.

 

An identification of the fractional constant order system for 
various lengths of TEA is presented in Example 1. In this exam-

ple, the implementation length of TEA is reduced to 50% of the 
original ones needed to cover a full range of consideration of 
fractional order system, with no losses in number of samples. 

Example 1. Let us consider the DFVOSS 𝒜-type system given 
by Eqs (1)–(3), where 

𝐴 = 𝑓 = −0.3, 𝐵 = 1, 𝐶 = 1, 𝛼𝑘 = 0.6. 

 
Fig. 2. Original and estimated state variable from Example 1  

given for full (L = 4,000) and finite (L = 3,000, 
L = 2,500 and L = 2,000) approximation lengths 

 
Fig. 3. Original and estimated order from Example 1 given for full 

(L = 4,000) and finite (L = 3,000, L = 2,500  

and L = 2,000) approximation lengths 

 
Fig. 4. Original and estimated parameter from Example 1 given for full 

(L = 4,000) and finite (L = 3,000, L = 2,500  

and L = 2,000) approximation lengths 

The state, order and parameter estimation of the system de-
scribed in Example 1 are presented in Figs. 2, 3 and 4, respec-
tively. In this example, for all implementation lengths of TEA, the 
state estimation converges to the original one with high accuracy. 

Moreover, despite the 50% length reduction of TEA, the order 
estimations overlap each other and this overlap does not influence 
the final order results. However, from Fig. 4, it is possible to note 
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some amount of discrepancy between various tails’ implementa-
tions of TEA. The plots of the estimated parameters are near the 
original one, but the differences between them are, in this case, 
noticeable. All these observations indicate that order estimation is 
much more robust in reducing samples of number than parameter 
estimation. We can infer that in pursuance of maintaining the high 
values of order estimation, even small differences in parameter 
estimation lead to high accuracy in state estimation. 

We achieved satisfying estimation results even with a high 
percentage length reduction of TEA. Thus, it can also be interest-
ing to show the time execution of TEA depending on its implemen-
tation length. The time consumption of the TEA algorithm, de-
pending on its length implementation, is presented in Tab. 1. As 
we can see, the average execution time of TEA equals around 

230 s for a set of 4,000 combined samples of state, order and 
parameter estimation. On the other hand, for 2,000 samples, the 
same estimation process took around 184 s. The time-consuming 
tests were conducted on a PC with an Intel Core i7-5500U CPU, 

2.4 GHz, 8 GB RAM and Matlab version 2021b 64 bit. The sum 
squared error (SSE) of state, order and parameter for various 
implementation lengths of TEA corresponding to Example 1 is 
given in Tab. 2. The SSE is calculated as a sum of squares’ dif-
ferences between original data and the corresponding estimates. 

Tab. 1. Time execution of TEA depending  
             on its implementation length (L) 

Implementation length (𝑳) Time execution (𝒔) 

𝐿 = 4,000 230.75 

𝐿 = 3,000 218.76 

𝐿 = 2,500 195.30 

𝐿 = 2,000 183.55 

Tab. 2. The sum squared error of state, order and parameter  
             corresponding to Example 1; for various lengths of TEA 

Length State Parameter Order 

L=4,000 0.2179 37.8467 62.7249 

L=3,000 0.2175 38.1044 62.7476 

L=2,500 0.2180 38.6321 62.8327 

L=2,000 0.2170 39.8187 62.9066 

An estimation of the fractional variable order system is pre-
sented in Example 2. It is an extension of Example 1 while replac-
ing the constant value of the order with a time-varying function. In 
this example, we show the results of applying the TEA with its full 

implementation range and reduced to 50%. 

Example 2. Let us consider the DFVOSS 𝒜-type sys-
tem given by Eqs (1)–(3), where 

𝐴 = 𝑓 = −0.3, 𝐵 = 1, 𝐶 = 1,

𝛼𝑘 = 0.2 + 0.1𝑘ℎ  for 𝑘 = 1,2,3, …
 

In this case, we can see that despite reduced estimation 
length in TEA, the results tend to be the original values of the 
desired system. The state, order and parameter estimation are 
shown in Figs. 5, 6 and 7, respectively. The state estimation is 
reflected with high accuracy for constraint and unconstraint TEA 
implementation. The original and both estimated states overlap 
with high accuracy. Compared to Example 1, the order and pa-

rameter estimations achieved the original values starting with 1 s, 
and maintained these during the whole simulation process. In 

Figs. 6 and 7, we can observe the only slight difference between 
the estimation of order and parameter for TEA considering 4,000 
and 2,000 historical samples. These insignificant changes and 
time-consumption reduction show the advantage of the proposed 
TEA with implementation length constraints. The sum squared 
error (SSE) of state, order and parameter for various implementa-
tion lengths of TEA corresponding to Example 2 is given in Tab. 3. 

 
Fig. 5. Original and estimated state variable from Example 2 given for full 

(L = 4,000) and finite (L = 2,000) approximation lengths 

 
Fig. 6. Original and estimated order from Example 2 given for full 

(L = 4,000) and finite (L = 2,000) approximation lengths 

 
Fig. 7. Original and estimated parameter from Example 2 given for full 

(L = 4,000) and finite (L = 2,000) approximation lengths 

Tab. 3. The sum squared error of state, order and parameter   
             corresponding to Example 2; for various length of TEA 

Length State Parameter Order 

L=4,000 0.1635 34.8872 1663.2 

L=2,000 0.1634 35.0478 1663.1 

Usage of the TEA in the estimation process for fractional vari-
able order system with input signal being the Gaussian noise is 
shown in Example 3. The noise parameters are 0 mean value and 
0.1 variance. 
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Example 3. Let us consider the DFVOSS 𝒜-type system giv-
en by Eqs (1)–(3), where 

𝐴 = 𝑓 = −0.3, 𝐵 = 1, 𝐶 = 1, 𝑢𝑘 ∼ 𝒩(0,0.1)

𝛼𝑘 = 0.2 + 0.1𝑘ℎ  for 𝑘 = 1,2,3, … .
 

The estimation results achieved in Example 3 are shown in 
Figs. 8–10. In contrast with both of the previous examples, there 
is no difference between state estimation for TEA with length 
𝐿 = 4,000 vis-à-vis that with length 𝐿 = 2,000. Applying the 
noisy input signal and time-varying order to the TEA lead to the 
same results for both algorithms’ lengths. It is an interesting issue 
that decreasing the number of samples in TEA reduces its compu-
tation time and does not influence results. Fig. 9 shows that the 

order estimations overlap the original one up to 2.5 s., and start-
ing with this time, the small difference occurs. A similar situation 
can be observed on the plot with parameter estimation (see Fig. 
10), where the curves are near the original ones. The obtained 
results demonstrate the high precision of TEA for the reduced 
number of samples applied to fractional variable order systems 
with Gaussian noise as an input signal. The sum squared error 
(SSE) of state, order and parameter for various implementation 
lengths of TEA corresponding to Example 3 is given in Tab. 4. 

 
Fig. 8. Original and estimated state variable from Example 3 given for full 

(L = 4,000) and finite (L = 2,000) approximation lengths 

 
Fig. 9. Original and estimated order from Example 3 given for full 

(L = 4,000) and finite (L = 2,000) approximation lengths 

 
Fig. 10. Original and estimated parameter from Example 3 given for full  

 (L = 4,000) and finite (L = 2,000) approximation lengths 

Tab. 4. The sum squared error of state, order and parameter  
             corresponding to Example 3; for various length of TEA 

Length State Parameter Order 

L=4,000 0.4711 738.2196 1875.8 

L=2,000 0.4831 744.9644 1902.9 

6.2. Identification without input signal knowledge 

When an input signal is not measured, the identification pro-
cess can differ from desired values or order and system parame-
ter. This can be explained by the fact that in practice, the system 
noise can have some unknown dynamical correlation of some 
order and parameter. Let us assume the fractional noise system 
equation in the following form: 

Δ1
𝛼𝑥𝑘+1 = 𝑓1𝑥𝑘 + 𝜔𝑘

′  

where 𝜔𝑘
′  is a system noise also containing the fractional order 

dynamical correlation described by the following relation: 

Δ2
𝛼𝜔𝑘+1

′ = 𝑓2𝜔𝑘
′ + 𝜔𝑘  

where 𝜔𝑘  is assumed to be noise without dynamical correlation. 
By combining both equations, we obtain 

Δ1
𝛼𝑥𝑘+1 −

1

𝑓2

Δ2
𝛼𝜔𝑘+1

′ = 𝑓1𝑥𝑘 −
1

𝑓2

𝜔𝑘 . 

As we can see, this dynamical correlation can have a direct 
effect on estimated order and system parameter in the estimation 
process, which can make the obtained estimation results different 
from those assumed in numerical models, because they consider 
also the dynamical correlation of the source noise. However, this 
will not pose a problem in estimation of real plant noise because 
the aim of estimation is to find the most appropriate model with 
the assumption that the source noise is without dynamical correla-
tion. 

7. IDENTIFICATION AND ANALYSIS OF MEMS 
GYROSCOPE’S NOISES 

Motivated by the study of Macias et al. [24], where it was 
shown that the accelerometer’s noise of MPU9250 contains the 
fractional order behaviour, we decided to make a noise analysis of 
its three-axes gyroscope. We utilise the TEA with various approx-
imation lengths during the estimation process. The reduced im-
plementation length of TEA by up to 50% decreases time execu-
tion and has an insignificant impact on final estimation results. 

This section provides the experimental results pertaining to 
the modelling of noises for the three-axes gyroscope that forms 
part of the SparkFun MPU9250 Inertial Measurement Unit (IMU) 
built-in MEMS technology. We assume unknown input signal 
knowledge during the entirety of the estimation process. 

The MPU9250 unit is a nine degree of freedom MEMS with 
three accelerometer’s axes, three gyroscope’s axes and three 
magnetometer’s axes. It breakout board runs on 3.3 VDC and 

contains I2C and SPI communication protocols. 

7.1. Experimental setup 

The gyroscope’s data were collected based on an experi-
mental setup that is presented in Fig. 11. The Inertial Measure-
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ment Unit (IMU), denoted as MPU9250 in a stationary position, 
was connected to an Arduino Due development board using the 

I2C protocol. Its operating range was configured to +/
−2,000 dps, and the step time for data gathering equals 0.01 s. 
Then, the measurement noises from the three axes of the gyro-
scope were transferred to the Matlab/Simulink environment and 
analysed using the triple estimation algorithm. The estimations of 
state, order and parameter of noises corresponding to the gyro-

scope axes x, y and z were conducted based on TEA with full 

implementation length (𝐿 = 3,000) and constrained to 50% by 
setting 𝐿 to 1,500 considering samples. The TEA was separately 

applied to noise estimations carried out for the x, y and z axes 

under, respectively, the following KF𝑥, KFo and KFw parameters: 

 Parameters of KF𝑥 filter: 

𝑃0 = [0.01], 𝑄0 = [0.15],

𝑥0 = [0], 𝑅 = {
0.0235  for 𝑥-axis noise 
0.0178  for 𝑦-axis noise 

0.0191  for 𝑧-axis noise 

 

 Parameters of KFo filter: 

𝑃0
𝑜 = [0.01], 𝑄0

𝑜 = [0.1],

𝛼0 = [1], 𝔄 = 1, 𝔅 = 2, 𝛿𝑜 = 0.5,

𝑅𝑜 = {
0.0235  for 𝑥-axis noise 

0.0178  for 𝑦-axis noise 

0.0191  for 𝑧-axis noise 

 

 Parameters of 𝐾𝐹𝑤 filter: 

𝑃0
𝑤 = [0.01], 𝑄0

𝑤 = [0.1],

𝑤0 = [0], 𝔄 = 1, 𝔅 = 2, 𝛿𝑤 = 0.5,

𝑅𝑤 = {
0.0235  for 𝑥-axis noise 

0.0178  for 𝑦-axis noise 

0.0191  for 𝑧-axis noise 

 

 
Fig. 11. The real view of experimental setup with an Arduino Due  

development board and MPU9252 IMU mounted  
on the shaft of a servo motor in a fixed position 

7.2. Experimental results 

The estimation of x-axis noise is presented in Fig. 12. It is 
worth noting that the results overlap with no differences for both 
lengths of TEA. The state, order and parameter plots are the 
same despite significant TEA length reduction. Moreover, Fig. 13 
confirms, in this case, the fractional order noise, which tends to 

0.3. The parameter estimation stabilises its value around −1.6 
(see Fig. 14). Collectively, all these observations suggest that the 

estimation results of x-axis noise are characterised by a high 
degree of precision. 

Analysis of y-axis noise is presented in Figs. 15-17. As shown 
in Fig.15, the state estimation is well-reflected for both lengths of 
TEA. In this case, the noise also exhibits the fractional order 

dynamic, and its order value goes to 0.3 rapidly (see Fig. 16). 
This order value was maintained until the final estimation process. 
Additionally, it can be noted in Fig. 17 that the estimated parame-
ter tends to the value −1.5 and follows it with minor fluctuations. 

The identification of z-axis noise is shown in Fig. 18. As in 
previous cases, the constraints of TEA implementation length do 
not influence estimation results. The order estimation shown in 
Fig. 19 reveals its fractional behaviour. We can see that this time 
also, the order value achieved the central value very quickly and 
stabilises itself around the value 0.3. The parameter estimation of 

y-axis noise presented in Fig. 20 attains the value −2 in approxi-
mately 5 s. 

To summarise, using TEA during the noise estimation process 

allows us to obtain high-accuracy noise models for the x, y and z 
axes of the gyroscope that forms part of the MPU9250 sensor. 
Moreover, all the investigated data highlight its fractional order 
dynamic correlation and robustness for the length constraint of 
TEA up to 50%. This fact can significantly reduce the time con-
sumption for TEA execution in the absence of estimation of preci-
sion losses. The sum squared error (SSE) of state, order and 
parameter for various implementation lengths of TEA correspond-
ing to experimental data are given in Tab. 5. In this case, the SSE 
is calculated directly between their estimates for lengths L = 3,000 
and L = 1,500. 

 
Fig. 12. Original and estimation of x-axis noise given for full  

(L = 3,000) and finite (L = 1,500) approximation lengths 

 
Fig. 13. Order estimation for x-axis noise given for full (L = 3,000)  

and finite (L = 1,500) approximation lengths 
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Fig. 14. Parameter estimation for x-axis noise given for full (L = 3,000) 

and finite (L = 1,500) approximation lengths 

 
Fig. 15. Original and estimation of y-axis noise given for full  

(L = 3,000) and finite (L = 1,500) approximation lengths 

 
Fig. 16. Order estimation for y-axis noise given for full (L = 3,000)  

and finite (L = 1,500) approximation lengths 

 
Fig. 17. Parameter estimation for y-axis noise given for full (L = 3,000) 

and finite (L = 1,500) approximation lengths 

 
Fig. 18. Original and estimation of z-axis noise given for full  

(L = 3,000) and finite (L = 1,500) approximation lengths 

 
Fig. 19. Order estimation for z-axis noise given for full (L = 3,000)  

and finite (L = 1,500) approximation lengths 

 
Fig 20. Parameter estimation for z-axis noise given for full (L = 3,000) 

and finite (L = 1,500) approximation lengths 

Tab. 5. The sum squared error of state, order and parameter  
             corresponding to experimental noise data 

Noise State Parameter Order 

x-axis 1.79 ⋅ 10−8 2.16 ⋅ 10−7 5.09 ⋅ 10−8 

y-axis 3.29 ⋅ 10−8 2.52 ⋅ 10−5 1.08 ⋅ 10−6 

z-axis 6.52 ⋅ 10−9 1.62 ⋅ 10−6 7.36 ⋅ 10−8 

8. CONCLUSIONS 

The paper presents the experimental and numerical results  
of applying the triple estimation algorithm with approximation 
length constraints. The possibilities of such algorithms have been 
revealed during the state, order and parameter estimation  
of fractional constant and variable order systems in several nu-
merical examples. In sets of numerical examples, the implementa-
tion length of TEA was reduced to 50% of the number of samples 
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needed to cover the whole computing range with no implementa-
tion losses. The estimated state and order plots for the fractional 
constant order system tend to the original values. Only a tiny 
discrepancy occurs during parameter estimation for selective 
implementation length reduction. However, it has not influenced 
the final state estimation results. When identifying the fractional 
variable order system with different lengths of TEA, we can notice 
only a slight difference between the order estimations. Despite a 
length reduction to 50% of the original size, the estimated state, 
order and parameter curves overlap and are near the original 
ones. The numerical tests confirm the high accuracy of the 
achieved estimation results even for a finite length of the triple 
estimation algorithm. Combining numerical results leads to the 
conclusion that a reduction of samples by up to 50% does not 
significantly affect the state estimation results of considering 
fractional order systems and substantially decreases its time 
duration. 

The triple estimation algorithm was also successfully used for 
fractional noise estimation of the gyroscope, part of a popular 
Inertial Measurement Unit known as MPU9250. The noise analy-

sis was conducted for 𝑥, 𝑦 and 𝑧 axes of the gyroscope. The 
state, order and parameter estimation results for each axis of the 
gyroscope are similar. The conducted experiments show that the 
order of noises for the three gyroscopes’ axes equals approxi-
mately 0.3, and the estimated parameters achieve a value of 
around –1.8. At this time, the approximation length also does not 
influence the final estimation results. Moreover, the experiments 
show the fractional order correlation dynamics of the investigated 
noises. 

The plethora of numerical examples and experiments allow us 
to ascertain that the triple estimation algorithm with finite length 
approximation becomes a convenient tool during the analysis, 
identification and estimation of fractional variable order systems. 
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