PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of propagative instability in shear using gradient-enhanced and viscoplastic model

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Symulacje propagującej się niestateczności modelami gradientowej plastyczności i lepkoplastyczności
Języki publikacji
EN
Abstrakty
EN
The research presented in this paper is focused on simulation of a propagative instability called Lueders bands using large strain plasticity with Huber-Mises-Hencky yield function. Two types of regularization are used: gradient-enhanced plasticity and viscoplasticity. Regularization is needed to avoid mesh sensitivity associated with the classical continuum description. A special sample is used to study Lueders band propagation in shear, its shape is motivated by experiments. The gradient-enhanced model used in computation provides a more reliable regularization than the viscoplastic model.
PL
W artykule zaprezentowano symulacje numeryczne propagujących się pasm lokalizacji odkształcenia nazywanych pasmami Luedersa wykorzystując model dużych deformacji z funkcją plastyczności Hubera-Mises-Hencky'ego. Użyto dwóch typów regularyzacji, gradientowej plastyczności oraz lepkoplastyczności. Regularyzacja jest niezbędna celem uniknięcia zależności wyników od gęstości siatki elementów skończonych. Do przeprowadzania obliczeń w warunkach czystego ścinania została użyta specjalna próbka, której kształt motywowany jest eksperymentami. Model gradientowy wykazał lepsze możliwości regularyzacyjne niż model lepkoplastyczny.
Wydawca
Rocznik
Strony
57--63
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Chair for Computational Engineering, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
  • Chair for Computational Engineering, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
autor
  • Chair for Computational Engineering, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • de Souza Neto, E., Peric, D., Owen, D., 2008, Computational methods for plasticity. Theory and applications. John Wiley & Sons, Chichester.
  • Estrin, Y., Kubin, L., 1995, Spatial coupling and propagative plastic instabilities. In Mühlhaus, H.-B., editor, Continuum Models for Materials with Microstructure, John Wiley & Sons, Chichester, 395-450.
  • Geers, M.G.D., 2004, Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework, Comput. Methods Appl. Mech. Engrg., 193, 3377-3401.
  • Hallai, J., Kyriakides, S., 2011a, On the effect of Lüders bands on the bending of steel tubes. Part I: Experiments, Int. J. Solids Struct., 48, 3275-3284.
  • Hallai, J., Kyriakides, S., 2011b, On the effect of Lüders bands on the bending of steel tubes. Part II: Analysis, Int. J. Solids Struct., 48, 3285-3298.
  • Hallai, J., Kyriakides, S., 2013, Underlying material response for Lüders- like instabilities, Int. J. Plasticity, 47, 1-12.
  • Korelc, J., 2009, Automation of primal and sensitivity analysis of transient coupled problems, Computational Mechanics, 44, 631-649.
  • Kyriakides, S., Ok, A., Corona, E., 2008, Localization and propagation of curvature under pure bending in steel tubes with Lüders bands, Int. J. Solids Struct., 45(10), 3074-3087.
  • Lee, E.H., 1969, Elastic plastic deformation at finite strain, ASME Trans. J. Appl. Mech., 36, 1-6.
  • Lee, E.H., Liu, D.T., 1967, Finite-strain elastic-plastic theory with application to plane-wave analysis, J. Appl. Phys., 38, 19-27.
  • Mazière, M., Luis, C., Marais, A., Forest, S., Gaspèrini, M., 2017, Experimental and numerical analysis of the Lüders phenomenon in simple shear, Int. J. Solids Struct., 106-107, 305-314.
  • Oka, F., Mühlhaus, H.-B., Yashima, A., Sawada, K., 1998, Quasistatic and dynamic characteristics of strain gradient dependent non-local constitutive models, In: de Borst, R., van der Giessen, E., editors, Material Instabilities in Solids, IUTAM, John Wiley & Sons, Chichester, 387-404.
  • Okazawa, S., 2009,. Structural bifurcation for ductile necking localization, Int. J. Nonlinear Mech., 45, 35-41.
  • Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M., de Vree, J.H.P, 1996, Gradient-enhanced damage for quasi-brittle materials, Int. J. Numer. Meth. Engng, 39, 3391-3403.
  • Simo, J.C., 1988, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part 1. Continuum formulation, Comput. Methods Appl. Mech. Engrg, 66, 199-219.
  • Sluys, L.J., Wang, W.-M., 1998, Macroscopic modelling of stationary and propagative instabilities, In: de Borst, R., van der Giessen, E., editors, Material Instabilities in Solids, IUTAM, John Wiley & Sons, Chichester, 489-505.
  • Sun, H.B., Yoshida, F., Ma, X., Kamei, T., Ohmori, M., 2003, Finite element simulation on the propagation of Lüders band and effect of stress concentration, Materials Letters, 57(21), 3206-3210.
  • Wang, W.M., 1997, Stationary and propagative instabilities in metals - a computational point of view, Ph.D. dissertation, Delft University of Technology, Delft.
  • Wang, W.M., Sluys, L.J., de Borst, R., 1997, Viscoplasticity for instabilities due to strain softening and strain-rate softening, Int. J. Numer. Meth. Engng, 40(20), 3839-3864.
  • Winnicki, A., Pearce, C.J., Bićanić, N., 2001, Viscoplastic Hoffman consistency model for concrete, Comput. & Struct., 79, 7-19.
  • Wriggers, P., Miehe, C., Kleiber, M., Simo, J., 1992, On the coupled thermomechnical treatment of necking problems via finite element methods, Int. J. Numer. Meth. Engng, 33, 869-883.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d172d8ce-561c-483c-8ad7-d36e1eaa99d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.