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Abstract 

The research presented in this paper is focused on simulation of a propagative instability called Lueders bands using 

large strain plasticity with Huber-Mises-Hencky yield function. Two types of regularization are used: gradient-enhanced 

plasticity and viscoplasticity. Regularization is needed to avoid mesh sensitivity associated with the classical continuum 

description. A special sample is used to study Lueders band propagation in shear, its shape is motivated by experiments. 

The gradient-enhanced model used in computation provides a more reliable regularization than the viscoplastic model. 
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1. INTRODUCTION 

Material or geometrical softening often leads to 

localized deformation that can be stationary, for in-

stance shear band or a neck, or propagative like 

Lueders bands or Portevin Le Chatelier (PLC) effect.  

The instability classification is proposed in (Estrin & 

Kubin, 1995; Sluys & Wang, 1998). Lueders bands 

were tested mostly in tension, see e.g. (Sun et al., 

2003), but also in bending (Kyriakides et al., 2008; 

Hallai & Kyriakides, 2011a; Hallai & Kyriakides, 

2011b) and in shear (Mazière et al., 2017). Such un-

stable material behaviour has been a subject of exten-

sive research because of its significance in several   

fields of science and engineering, including metallur-

gic processes, as well as the design of machines and 

civil engineering structures. 

In this paper two large strain models are used to 

simulate Lueders bands which are observed for exam-

ple in mild steel at room temperature, see for instance 

(Hallai & Kyriakides, 2013). Their character is usu-

ally transient, however they influence the structural 

performance, so their understanding is important.  In 

order to avoid mesh sensitivity associated with the 

classical continuum description of softening, regular-

ization is provided in the model by gradients (gradi-

ent-enhanced model) or viscosity (viscoplastic 

model). Numerical simulations are preformed using 

AceGen and AceFEM numerical packages for Wolf-

ram Mathematica (Korelc, 2009). 

The idealized stress-strain diagram associated 

with Lueders bands propagation is shown in figure 1. 

At the upper yield limit softening occurs and local-

ized stationary band is formed. Propagation starts 

when the lower yield stress is reached and a plastic 

fronts forms. During this process, the plastic strains 

accumulate along the sample. After reaching the 

Lueders strain hardening starts and the deformation 

can become uniform. This process is fairly easy to 

trace both experimentally and numerically for tensile 

specimens. In this paper, motivated by the work of 
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(Mazière et al., 2017), it is attempted to simulate the 

Lueders bands propagation in almost pure shear pro-

cess zone, using a special sample geometry. 

 

Fig. 1. Simplified nominal stress vs. averaged strain relation for 
specimen deformation involving Lueders effect. 

The paper is divided into four sections. Section 2 

contains a brief description of the gradient-enhanced 

and viscoplastic models. Section 3 contains the 

presentation of numerical results.  Conclusions are 

summarized in Section 4 

2. BRIEF DESCRIPTION OF THE 

CONSTITUTIVE MODELS 

The material models used in the simulation of iso-

thermal response are summarized in this section. 

They are based on large strain formulations (Simo, 

1988, Wriggers et al., 1992, Geers, 2004).  

A deformable continuous isotropic body is con-

sidered. Vector X denotes the reference location of a 

body particle at time t0 and vector x identifies the cur-

rent position of particle X at time t. Function x = (X, 

t) specifies the motion of the body. The deformation 

gradient F is defined as usual: 

( , )t




X
F

X
 (1) 

A decomposition of the deformation gradient into 

elastic and plastic parts is performed, see (Lee, 1969; 

Lee & Liu, 1967): 

e pF F F  (2) 

The elastic left Cauchy-Green tensor is defined 

as: 

 
T

e e eb F F  (3) 

For the classical (rate and gradient-independent) 

theory the free energy potential per unit volume in 

reference configuration is decomposed additively, see 

(Simo, 1988; Wriggers et al., 1992): 

   , ( )e e e p     b b  (4) 

and the following components are assumed in the em-

ployed model: 

       
1/3 21 1

tr det 3 ln
2 2

e e e e eG K J


  b b b  (5) 

21
( )

2

p H    (6) 

In equation (5) G and K are elastic moduli, Je = 

detFe, H is linear isotropic hardening modulus and γ 

is an equivalent plastic strain. The Kirchhoff stress 

tensor and the hardening function are derived from 

the free energy potential: 

2 ,e

e
h

 



 
 

 
b

b
  (7) 

In this paper the following yield function is in 

general adopted: 

( , , , ) ( ) ( , , ) 0p yF f        τ τ  (8) 

where f(τ) is the Huber-Mises-Hencky (HMH) stress 

measure and σy represents multi-branch hardening de-

scribed separately for the viscoplastic model (depend-

ent on the equivalent plastic strain rate) and the gra-

dient-enhanced model (where damage-like variable  

reduces the yield strength) in the subsections below. 

The following definitions are used: 

2( ) 2f J   (9) 

2

2

1

2
devJ   I  (10) 

where τdev is the deviatoric part of stress tensor and I 

is identity matrix. It is noted that a model which com-

bines the two regularization effects simultaneously is 

not considered in this paper, although this possibility 

was discussed for instance in (Oka et al., 1998; Sluys 

and Wang, 1998). Following (Simo, 1988), the asso-

ciated flow rule is adopted for the Lie derivative of 

be: 

1

2

e e

v b Nb  (11) 

where N is the normal to the yield surface in the ref-

erence configuration and   is the plastic multiplier 

satisfying the standard Kuhn-Tucker conditions: 

0, 0, 0p pF F     (12) 
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The conditions are also satisfied for the regular-

ized models. Moreover, the plastic multiplier plays 

the role of the plastic strain measure   . It is men-

tioned that due to large deformations geometrical sof-

tening is present in the description, see (Okazawa, 

2009). 

2.1. Gradient-enhanced model 

The yield function for the gradient-enhanced 

model is defined according to (Geers, 2004): 

( , , ) ( ) ( , ) 0p yF f      τ τ  (13) 

where the yield strength depends on a degradation pa-

rameter  in the following way (see figure 2a): 

   

0 1

0 2 1 1 1

(1 )
( , )

1

y

y

y H

   
  

     

 
 

     

 (14) 

where H2 ≥ 0 and softening is induced by the plastic 

degradation variable   [0,1].  Its evolution is de-

scribed by the following function: 

1 exp( )z     (15) 

where β is a ductility parameter and z is a non-local 

variable obtained from the following averaging equa-

tion (Peerlings et al., 1996): 

2 2

0z l z     (16) 

in which l is an internal length scale, 0 is the gradient 

operator in material description and κ is a history var-

iable 2 / 3  .  

Homogeneous natural boundary conditions are 

assumed for the averaging equation. It is mentioned 

that in the numerical solution algorithm the averaged 

plastic strain z is discretized in addition to displace-

ments and two-field finite elements are used. It is 

moreover stressed that the yield strength degradation 

is frozen  = 1 when  = 1 to exclude material sof-

tening in the second hardening stage. 

2.2. Viscoplastic model 

The viscoplastic model is based on the con-

sistency concept, cf. (Wang, 1997). In the model, in 

contrast to the classical Perzyna and Duvaunt-Lions 

approaches, the plastic consistency equation is de-

pendent on an equivalent viscoplastic strain rate, see 

(Wang et al., 1997; Winnicki et al., 2001). The yield 

function is rate-dependent: 

( , , ) ( ) ( , ) 0p yF f         (17) 

and the yield strength is:  

 0( , ) 2 / 3 ( )y y h         (18) 

where ξ is viscosity, and the following hardening 

function is employed: 

 
1 1

1 1 2 1 1

( )
H

h
H H

  


    


 

  

 (19) 

with H1 < 0 and H2 > 0. 

a)  

b)  

Fig. 2. Yield stress vs equivalent plastic strain relations used in 
gradient (a) and viscoplastic (b) models. 

Figure 2b shows the simplified multilinear model 

of yield strength evolution with the increase of the 

plastic strain measure σy(γ) used in this paper.  

3. SIMULATION RESULTS 

A special sample geometry is used to simulate 

Lueders bands in shear, see figure 3. When the sample 

is stretched, owing to its shape, which is motivated by 

the experiments, in the middle zone almost pure shear 

is obtained. Since the Lueders bands can be observed 

only for this central part (process zone marked by a 

box in figure 3 on the right), simulation results are 

presented only for this part. The dimensions of the 

shear sample are height 150 mm, width 40 mm, thick-

ness 1 mm. In the middle of the strip the thickness is 
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reduced to 0.5 mm (marked by an inner box in figure 

3 right). Vertical displacement is restrained at the bot-

tom of the sample and imposed at the top (displace-

ment rate is 0.2 mm/s). Zero horizontal displacement 

is assumed along the symmetry axis of the middle 

strip to avoid spurious rotation. Out of plane displace-

ment is blocked only at one point (plane stress condi-

tions). Eight-node cubic elements with linear shape 

functions are used (for the gradient model similar 

shape function are used for both interpolated fields). 

F-bar enhancement is employed to avoid volumetric 

locking, see (de Souza Neto et al., 2008). The total 

number of elements are 78384. The material model 

parameters are shown in table 1. 

a)  b)  

Fig. 3. Specimen geometries. 

Table 1. Material parameters. 

Property Symbol Value Unit 

Young Modulus E 207109 N/m2 

Poisson ratio ν 0.29 - 

Yield threshold 

in tension 
σy0 450106 N/m2 

Linear harde-

ning modulus 
H1 -0.005 E N/m2 

Linear harde-

ning modulus 
H2 0.005 E N/m2 

First threshold γ1 0.15  

Enforced displa-

cement 
∆L 5 mm 

Viscosity ξ 0/10/100/200 MPa s 

tmax tmax 25 s 

Ductility β 1 - 

Internal length l 5/10/20 mm 

 

In figure 4 the diagrams of total force (ΣR) versus 

imposed displacement multiplier λ for the two models 

are shown. Two aspects are investigated respectively: 

dependence on internal length or viscosity. It can be 

observed that the influence of the internal length is 

small and the diagrams are smooth, see figure 4 (top). 

Viscosity affects the results more visibly. For a 

smaller value of viscosity, the diagrams during the 

softening stage are steeper and strong oscillations can 

be seen when the band travels through the sample.  If 

the value of viscosity increases, the oscillations are 

smoothed, see figure 4 (bottom).  It is mentioned that 

oscillations are observed in experiments, cf (Mazière 

et al., 2017), but here they are related to numerical 

effects and hence undesirable. For the gradient-en-

hanced model differences between the diagrams can 

be seen in the last stage of stretching contrary to the 

viscoplastic model where the diagrams differ signifi-

cantly in the initial stage. The differences for the gra-

dient-enhanced model in the final stage are caused by 

stronger localization for lower values of the internal 

length. Due to the very small process zone for the 

shear sample, softening stage is very short and cannot 

be seen in the diagrams. The final load values ob-

tained for the two models differ because of the differ-

ence in softening representation and regularization. 

a)  

b)  

Fig. 4. Sum of reactions vs displacement multiplier for different 

internal lengths (a - gradient model) and  different viscosities (b 
- viscoplastic model). 

In figure 5 the distributions of (∆  /∆t, first set) 

and   (second set) are given. The plots of   and γ 

along the horizontal axis in the middle of the sample 

are additionally presented below the plastic strain 

(rate) profiles. First a band is formed in the middle of 
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the process zone (see figure 5 left), then two plastic 

fronts form and start to propagate in opposite direc-

tions (see figure 5, middle) and finally hardening 

dominates when the plastic state is active in the whole 

process zone (see figure 5 right). This is interpreted 

as Lueders type plastic process evolution. Please no-

tice that the plastic strains are out of the zone with 

reduced thickness. In the work of (Mazière et al., 

2017) the plastic fronts initially form at two sides of 

the shear strip and propagate towards the center, 

while in our experiment opposite situation is simu-

lated. This is probably caused by the geometry of the 

process zone with weakest cross section along the 

antysimmetry axis. 

The viscoplastic model gives similar results to the 

gradient enhanced model provided that the value of 

viscosity is high, see figure 6, but for the gradient-

enhanced model the results are almost symmetric. To 

compare the results see the middle plots in figures 5 

and 6. For the viscoplastic model the diagrams are 

shifted to the right. This difference can be observed 

in particular for the viscoplastic model where a local 

strain concentration can be observed in the top right 

part of the process zone. The differences in the behav-

ior can be caused by oscillations observed for the 

model with viscosity.  

Lueders bands propagation in shear is different 

than the propagation in tension, see for example the 

results for tension tests in (Sun et al., 2003). The 

shape of tension sample enables the Lueders front 

propagation through almost whole sample while for 

the shear sample the process zone is relatively nar-

row. 

 

Fig. 5. Distribution of   (first set) and distribution of   (second set) with corresponding diagrams plotted along horizontal cross section 

in the middle of the zone for internal length equal to 10 mm (gradient-enhanced model). From left λ = 0.05, λ = 0.20, λ = 1 
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Fig. 6. Distribution of   (first set) and distribution of   (second set) with corresponding diagrams plotted along horizontal cross section 

in the middle of the zone for viscosity equal to 100. From left λ = 0.04, λ = 0.16, λ = 1.

4. CONCLUSIONS 

Two large strain plasticity models, gradient-en-

hanced and viscoplastic, both with Huber-Mises-

Hencky yield function, have been used to simulate 

Lueders bands propagation in shear. In the considered 

cases the gradient model seems to provide better reg-

ularization than the viscoplastic model. If the value of 

viscosity is too low, strong oscillations occur in the 

load-displacement diagram. To validate the presented 

regularized constitutive models experiments on me-

tallic samples are now planned. 

ACKNOWLEDGMENTS 

The authors acknowledge valuable discussions on 

the research with Prof. T. Jankowiak from Poznań 

University of Technology (PUT). Part of the research 

was supported by the National Science Centre of Po-

land within grant number 2018/31/N/ST8/03573.  

REFERENCES 

de Souza Neto, E., Peric, D., Owen, D., 2008, Computational 

methods for plasticity. Theory and applications. John Wiley 

& Sons, Chichester. 

Estrin, Y., Kubin, L., 1995, Spatial coupling and propagative 

plastic instabilities. In Mühlhaus, H.-B., editor, Continuum 

Models for Materials with Microstructure, John Wiley & 

Sons, Chichester, 395-450. 

Geers, M.G.D., 2004, Finite strain logarithmic hyperelasto-plas-

ticity with softening: a strongly non-local implicit gradient 

framework, Comput. Methods Appl. Mech. Engrg., 193, 

3377-3401. 

Hallai, J., Kyriakides, S., 2011a, On the effect of Lüders bands on 

the bending of steel tubes. Part I: Experiments, Int. J. Solids 

Struct., 48, 3275-3284. 

Hallai, J., Kyriakides, S., 2011b, On the effect of Lüders bands 

on the bending of steel tubes. Part II: Analysis, Int. J. Solids 

Struct., 48, 3285-3298. 

Hallai, J., Kyriakides, S., 2013, Underlying material response for 

Lüders- like instabilities, Int. J. Plasticity, 47, 1-12. 

Korelc, J., 2009, Automation of primal and sensitivity analysis of 

transient coupled problems, Computational Mechanics, 44, 

631-649. 



 INFORMATYKA W TECHNOLOGII MATERIAŁÓW 

 – 63 – 

C
O

M
P

U
T

E
R

 M
E

T
H

O
D

S
 I

N
 M

A
T

E
R

IA
L

S
 S

C
IE

N
C

E
 

Kyriakides, S., Ok, A., Corona, E., 2008, Localization and prop-

agation of curvature under pure bending in steel tubes with 

Lüders bands, Int. J. Solids Struct., 45(10), 3074-3087. 

Lee, E.H., 1969, Elastic plastic deformation at finite strain, ASME 

Trans. J. Appl. Mech., 36, 1-6. 

Lee, E.H., Liu, D.T., 1967, Finite-strain elastic-plastic theory 

with application to plane-wave analysis, J. Appl. Phys., 38, 

19-27. 

Mazière, M., Luis, C., Marais, A., Forest, S., Gaspèrini, M., 2017, 

Experimental and numerical analysis of the Lüders phenom-

enon in simple shear, Int. J. Solids Struct., 106-107, 305-

314. 

Oka, F., Mühlhaus, H.-B., Yashima, A., Sawada, K., 1998, Quasi-

static and dynamic characteristics of strain gradient depend-

ent non-local constitutive models, In: de Borst, R., van der 

Giessen, E., editors, Material Instabilities in Solids, 

IUTAM, John Wiley & Sons, Chichester, 387-404. 

Okazawa, S., 2009,. Structural bifurcation for ductile necking lo-

calization, Int. J. Nonlinear Mech., 45, 35-41. 

Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M., de Vree, 

J.H.P, 1996, Gradient-enhanced damage for quasi-brittle 

materials, Int. J. Numer. Meth. Engng, 39, 3391-3403. 

Simo, J.C., 1988, A framework for finite strain elastoplasticity 

based on maximum plastic dissipation and the multiplica-

tive decomposition: Part 1. Continuum formulation, Com-

put. Methods Appl. Mech. Engrg, 66, 199-219. 

Sluys, L.J., Wang, W.-M., 1998, Macroscopic modelling of sta-

tionary and propagative instabilities, In: de Borst, R., van 

der Giessen, E., editors, Material Instabilities in Solids, 

IUTAM, John Wiley & Sons, Chichester, 489-505. 

Sun, H.B., Yoshida, F., Ma, X., Kamei, T., Ohmori, M., 2003, 

Finite element simulation on the propagation of Lüders band 

and effect of stress concentration, Materials Letters, 57(21), 

3206-3210. 

Wang, W.M., 1997, Stationary and propagative instabilities in 

metals - a computational point  of view, Ph.D. dissertation, 

Delft University of Technology, Delft. 

Wang, W.M., Sluys, L.J., de Borst, R., 1997, Viscoplasticity for 

instabilities due to strain softening and strain-rate softening, 

Int. J. Numer. Meth. Engng, 40(20), 3839-3864. 

Winnicki, A., Pearce, C.J., Bićanić, N., 2001, Viscoplastic Hoff-

man consistency model for concrete, Comput. & Struct., 79, 

7-19. 

Wriggers, P., Miehe, C., Kleiber, M., Simo, J., 1992, On the cou-

pled thermomechnical treatment of necking problems via fi-

nite element methods, Int. J. Numer. Meth. Engng, 33, 869-

883. 

 SYMULACJE PROPAGUJĄCEJ SIĘ 

NIESTATECZNOŚCI MODELAMI 

GRADIENTOWEJ PLASTYCZNOŚCI I 

LEPKOPLASTYCZNOŚCI. 

Streszczenie 

W artykule zaprezentowano symulacje numeryczne propagują-

cych się pasm lokalizacji odkształcenia nazywanych pasmami 

Luedersa wykorzystując model dużych deformacji z funkcją pla-

styczności Hubera-Mises-Hencky'ego. Użyto dwóch typów regu-

laryzacji, gradientowej plastyczności oraz lepkoplastyczności. 

Regularyzacja jest niezbędna celem uniknięcia zależności wyni-

ków od gęstości siatki elementów skończonych. Do przeprowa-

dzania obliczeń w warunkach czystego ścinania została użyta 

specjalna próbka, której kształt motywowany jest eksperymen-

tami. Model gradientowy wykazał lepsze możliwości regularyza-

cyjne niż model lepkoplastyczny. 
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