Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider a semilinear elliptic optimal control problem possibly subject to control and/or state constraints. Generalizing previous work, presented in Ahmad Ali, Deckelnick and Hinze (2016) we provide a condition which guarantees that a solution of the necessary first order conditions is a global minimum. A similiar result also holds at the discrete level where the corresponding condition can be evaluated explicitly. Our investigations are motivated by G¨unter Leugering, who raised the question whether the problem class considered in Ahmad Ali, Deckelnick and Hinze (2016) can be extended to the nonlinearity φ(s) = s|s|. We develop a corresponding analysis and present several numerical test examples demonstrating its usefulness in practice.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
325--344
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany
autor
- Institut für Analysis und Numerik, Otto–von–Guericke–Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
autor
- Mathematisches Institut, Universität Koblenz–Landau, Universitätstrasse 1, 56070 Koblenz, Germany
Bibliografia
- Ahmad Ali, A. (2017) Optimal Control of Semilinear Elliptic PDEs with State Constraints - Numerical Analysis and Implementation, PhD thesis. Dissertation. Hamburg, Universität Hamburg.
- Ahmad Ali, A., Deckelnick, K. and Hinze, M. (2016) Global minima for semilinear optimal control problems. Computational Optimization and Applications, 65, 261–288.
- Ahmad Ali, A., Deckelnick, K. and Hinze, M. (2018) Error analysis for global minima of semilinear optimal control problems. Mathematical Control and Related Fields (MCRF) 8.
- Arada, N., Casas, E. and Tröltzsch, F. (2002) Error estimates for the numerical approximation of a semilinear elliptic control problem. Computational Optimization and Applications, 23, 201–229.
- Casas, E. (1993) Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM Journal on Control and Optimization, 31, 993–1006.
- Casas, E. (2002) Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM: Control, Optimisation and Calculus of Variations, 8, 345–374.
- Casas, E. (2008) Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints. ESAIM: Control, Optimisation and Calculus of Variations, 14, 575–589.
- Casas, E., De Los Reyes, J. C. and Tröltzsch, F. (2008) Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM Journal on Optimization, 19, 616–643.
- Casas, E. and Mateos, M. (2002a) Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM Journal on Control and Optimization, 40, 1431–1454.
- Casas, E. and Mateos, M. (2002b) Uniform convergence of the FEM. Applications to state constrained control problems. Comput. Appl. Math., 21 , 67–100, Special Issue in Memory of Jacques-Louis Lions.
- Casas, E., Mateos, M. and Vexler, B. (2014) New regularity results and improved error estimates for optimal control problems with state constraints. ESAIM. Control, Optimisation and Calculus of Variations, 20, 803–822.
- Casas, E. and Tröltzsch, F. (2010) Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM: Control, Optimisation and Calculus of Variations, 16, 581–600.
- Casas, E. and Tröltzsch, F. (2015) Second order optimality conditions and their role in pde control. Jahresbericht der Deutschen Mathematiker-Vereinigung, 117, 3–44.
- Deckelnick, K. and Hinze, M. (2007a) Convergence of a finite element approximation to a state-constrained elliptic control problem. SIAM Journal on Numerical Analysis, 45, 1937–1953.
- Deckelnick, K. and Hinze, M. (2007b) A finite element approximation to elliptic control problems in the presence of control and state constraints. Hamburger Beiträge zur Angewandten Mathematik.
- Hante, F.M., Leugering, G., Martin, A., Schewe, L. and Schmidt, M. (2017) Challenges in Optimal Control Problems for Gas and Fluid Flow in Networks of Pipes and Canals: From Modeling to Industrial Applications. In: P. Manchanda, R. Lozi and A. Siddiqi (eds) Industrial Mathematics and Complex Systems. Industrial and Applied Mathematics. Springer, Singapore.
- Hinze, M., Pinnau, R., Ulbrich M. and Ulbrich, S. (2009) Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, 23, Springer, New York.
- Hinze, M. (2005) A variational discretization concept in control constrained optimization: The linear-quadratic case. Computational Optimization and Applications, 30, 45–61.
- Hinze, M. and Meyer, C. (2012) Stability of semilinear elliptic optimal control problems with pointwise state constraints. Computational Optimization and Applications, 52, 87–114.
- Hinze, M. and R¨osch, A. (2012) Discretization of optimal control problems. In: Constrained Optimization and Optimal Control for Partial Differential Equations, Springer, 160, 391–430.
- Hinze, M. and Tröltzsch, F. (2010) Discrete concepts versus error analysis in pde-constrained optimization. GAMM-Mitteilungen, 33, 148–162.
- Ito, K. and Kunisch, K. (2000) Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41, 343–364.
- Merino, P., Tröltzsch, F. and Vexler, B. (2010) Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space. ESAIM: Mathematical Modelling and Numerical Analysis, 44, 167–188.
- Meyer, C. (2008) Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control and Cybernetics, 37, 51–83.
- Mignot, F. (1976) Contrôle dans les in´equations variationelles elliptiques. J. Funct. Anal. 22, 130–185.
- Nasibov, S.M. (1990) On optimal constants in some Sobolev inequalities and their application to a nonlinear Schr¨odinger equation. Soviet. Math. Dokl. 40, 110–115, translation of Dokl. Akad. Nauk SSSR 307:538-542 (1989).
- Neitzel, I., Pfefferer J. and R¨osch, A. (2015) Finite element discretization of state-constrained elliptic optimal control problems with semilinear state equation. SIAM Journal on Control and Optimization, 53 , 874–904.
- Neitzel, I. and Wollner, W. (2017) A priori L2-discretization error estimates for the state in elliptic optimization problems with pointwise inequality state constraints. Numer. Math., online first.
- Veling, E.J.M. (2002) Lower Bounds for the Infimum of the Spectrum of the Schrödinger Operator in RN and the Sobolev Inequalities. JIPAM. Journal of Inequalities in Pure & Applied Mathematics 3, Article 63 [electronic only].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d16adca1-0fee-4bdb-8629-4960c6001a32