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Abstract: We consider a semilinear elliptic optimal control
problem possibly subject to control and/or state constraints. Gen-
eralizing previous work, presented in Ahmad Ali, Deckelnick and
Hinze (2016) we provide a condition which guarantees that a solu-
tion of the necessary first order conditions is a global minimum. A
similiar result also holds at the discrete level where the correspond-
ing condition can be evaluated explicitly. Our investigations are
motivated by Günter Leugering, who raised the question whether
the problem class considered in Ahmad Ali, Deckelnick and Hinze
(2016) can be extended to the nonlinearity φ(s) = s|s|. We develop a
corresponding analysis and present several numerical test examples
demonstrating its usefulness in practice.

Keywords: optimal control, semilinear PDE, uniqueness of global
solutions

1. Introduction and problem setting

Let Ω ⊂ R
d (d = 2, 3) be a bounded, convex polygonal/polyhedral domain, in

which we consider the semilinear elliptic PDE

−∆y + φ(·, y) = u in Ω, (1)

y = 0 on ∂Ω. (2)
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We assume that φ : Ω̄×R → R is a Carathéodory function with φ(x, 0) = 0 a.e.
in Ω and that

y 7→ φ(x, y) is of class C1 with φy(x, y) ≥ 0 for almost all x ∈ Ω; (3)

∀L ≥ 0 ∃cL ≥ 0 φy(x, y) ≤ cL for almost all x ∈ Ω and all |y| ≤ L. (4)

Here and from now onwards, φy and φyy denote the first and second partial
derivative of φ with respect to y, respectively. Under the above conditions it
can be shown that for every u ∈ L2(Ω) the boundary value problem (1), (2) has
a unique solution y =: G(u) ∈ H2(Ω) ∩H1

0 (Ω).
Next, let us introduce Uad := {v ∈ L2(Ω) : ua ≤ v(x) ≤ ub a.e. in Ω}, where

ua, ub ∈ R with −∞ ≤ ua ≤ ub ≤ ∞. For given y0 ∈ L2(Ω), α > 0 we then
consider the optimal control problem

(P)
minu∈Uad

J(u) := 1
2‖y − y0‖2L2(Ω) +

α
2 ‖u‖2L2(Ω)

subject to y = G(u) and ya(x) ≤ y(x) ≤ yb(x) for all x ∈ K.

Here, ya, yb ∈ C0(Ω̄) satisfy ya(x) < yb(x) for all x ∈ K, where K ⊂ Ω̄
is compact and either K ⊂ Ω or K = Ω̄. In the latter case we suppose, in
addition, that ya(x) < 0 < yb(x), x ∈ ∂Ω.

It is well known that (P) has a solution, provided that a feasible point ex-
ists (compare Casas, 1993). Under some constraint qualification, such as the
linearized Slater condition, a local solution ū ∈ Uad of (P) then satisfies the fol-
lowing necessary first order conditions, see Casas (1993), Theorem 5.2: There
exist p̄ ∈ L2(Ω) and a regular Borel measure µ̄ ∈ M(K) such that

∫

Ω

∇ȳ · ∇v + φ(·, ȳ)v dx =

∫

Ω

ūv dx ∀ v ∈ H1
0 (Ω), ya ≤ ȳ ≤ yb in K,

(5)
∫

Ω

p̄ (−∆v) + φy(·, ȳ)p̄ v dx =

∫

Ω

(ȳ − y0)v dx+

∫

K

v dµ̄

∀ v ∈ H1
0 (Ω) ∩H2(Ω), (6)

∫

Ω

(p̄+ αū)(u− ū) dx ≥ 0 ∀u ∈ Uad, (7)

∫

K

(z − ȳ) dµ̄ ≤ 0 ∀ z ∈ C0(K), ya ≤ z ≤ yb in K. (8)

In view of the nonlinearity of the state equation, problem (P) is in general non-
convex and hence there may be several solutions of the conditions (5)–(8). The
problem we are interested in is whether it is possible to establish sufficient con-
ditions, which guarantee that a solution of (5)–(8) is actually a global minimum
of (P). A first result in this direction was obtained by the authors in Ahmad
Ali, Deckelnick and Hinze (2016) and holds for a class of nonlinearities, which
satisfy a certain growth condition:
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Theorem 1 (Ahmad Ali, Deckelnick and Hinze, 2016, Theorem 3.2) Let d = 2;
suppose that y 7→ φ(x, y) belongs to C2 for almost all x ∈ Ω and that there exist
r > 1 and M ≥ 0 such that

|φyy(x, y)| ≤ M(φy(x, y))
1
r for almost all x ∈ Ω and all y ∈ R. (9)

Assume that (ū, ȳ, p̄, µ̄) solves (5)–(8) and that

‖p̄‖Lq ≤
( r − 1

2r − 1

)
1−r
r M−1C

2−2r
r

q α
ρ
2 q1/qr1/rρρ/2(2− ρ)

ρ
2−1, (10)

where q := 3r−2
r−1 , ρ := r+q

rq and Cq denotes the constant in (16) below. Then ū

is a global minimum for Problem (P). If the above inequality is strict, then ū is
the unique global minimum.

Assumption (9) is satisfied for φq(y) := |y|q−2y, provided that q > 3, if
we choose r = q−2

q−3 . Günter Leugering recently raised the question whether
our theory can be extended to include the case of q = 3. The corresponding
nonlinearity φ3(y) = |y|y appears, for example, in the mathematical modeling
of gas flow through pipes with PDEs (see Hante et al., 2017), so that an
extension of Theorem 1 to this case could be helpful in understanding the
optimal control of pipe networks. As φ3 is no longer C2 it does not fit directly
into the theory above. However, it turns out that, instead, the analysis can be
built on the fact that the partial derivative of φ3 with respect to y satisfies a
global Lipschitz condition.

The purpose of this paper is to generalize Theorem 1 in several directions.
To begin, we shall replace (9) by a condition that can be formulated for
C1–nonlinearities φ and is satisfied by the functions φq for every q ≥ 3,
thus including the case suggested by Günter Leugering, see (14). A second
generalization concerns the choice of the norm ‖p̄‖Lq in condition (10). Even
though the integration index q = 3r−2

r−1 is quite natural (solve r = q−2
q−3 for

q), it is, nevertheless, possible to formulate a corresponding result not just
for one index but for q belonging to a suitable interval, see (19), thus giving
additional flexibility in its application. Our arguments are natural extensions
of the analysis presented in Ahmad Ali, Deckelnick and Hinze (2016) and will
also cover the case of d = 3, left out in Theorem 1.

There is a lot of literature available considering the problem (P). For a
broad overview, we refer the reader to the references of the respective citations.
In Casas (1993) this problem is studied for boundary controls. The regularity
of optimal controls of (P) and their associated multipliers is investigated in
Casas and Tröltzsch (2010) and Casas, Mateos and Vexler (2014). Sufficient
second order conditions are discussed in, e.g., Casas and Mateos (2002),
Casas (2008) and Casas, De Los Reyes and Tröltzsch (2008), when the set K
contains finitely/infinitely many points. For the role of those conditions in
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PDE constrained optimization see, e.g., Casas and Tröltzsch (2015).

The finite element discretization of problem (P) in rather general set-
tings has been studied in Arada, Casas and Tröltzsch (2002), Casas and
Mateos (2002) and Hinze and Meyer (2012). Convergence rates for sets K,
containing only finitely many points are established in Merino, Tröltzsch
and Vexler (2010) for finite dimensional controls, and in Casas (2002) for
control functions. Only in Neitzel, Pfefferer and Rösch (2015) and Ahmad
Ali, Deckelnick and Hinze (2016) an error analysis is provided for general
pointwise state constraints in K. Error analysis for linear-quadratic control
problems can be found in, e.g., Casas, Mateos and Vexler (2014), Deckelnick
and Hinze (2007a,b), and Meyer (2008). Improved error estimates for the
state in the case of weakly active state constraints are provided in Neitzel
and Wollner (2016). A detailed discussion of discretization concepts and
error analysis in PDE-constrained control problems can be found in Hinze and
Rösch (2012), Hinze and Tröltzsch (2010), and in Hinze et al. (2009), Chapter 3.

The organization of the paper is as follows: in Section 2 we shall develop the
optimality conditions outlined above. In addition to the criteria based on an Lq–
norm of p̄, we shall also include a result that uses the sign of p̄. The variational
discretization of (P) is considered in Section 3 and is based on a finite element
approximation of (1), (2) that uses numerical integration for the nonlinear term.
We obtain corresponding optimality criteria for discrete stationary points and
apply these conditions in a series of numerical tests in Section 4, including the
nonlinearity φ(y) = y|y|.

2. Optimality conditions for (P)

In what follows we assume that (ū, ȳ, p̄, µ̄) is a solution of (5)–(8). Let u ∈ Uad

be a feasible control, y = G(u) the associated state such that ya ≤ y ≤ yb in K.
A straightforward calculation shows that

J(u)− J(ū) =
1

2
‖y − ȳ‖2L2(Ω) +

α

2
‖u− ū‖2L2(Ω)

+ α

∫

Ω

ū(u− ū)dx+

∫

Ω

(ȳ − y0)(y − ȳ)dx. (11)

By combining (6) for v := y − ȳ with (8) and (1) we deduce that
∫

Ω

(ȳ − y0)(y − ȳ) dx

= −
∫

Ω

p̄∆(y − ȳ) dx+

∫

Ω

φy(·, ȳ) p̄ (y − ȳ) dx−
∫

K

(y − ȳ)dµ̄

≥
∫

Ω

(u− ū)p̄ dx−
∫

Ω

(

φ(·, y) − φ(·, ȳ)− φy(·, ȳ)(y − ȳ)
)

p̄ dx.
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Upon inserting this relation into (11) and recalling (7), we finally obtain

J(u)− J(ū) ≥ 1

2
‖y − ȳ‖2L2(Ω) +

α

2
‖u− ū‖2L2(Ω) −R(u), (12)

where

R(u) =

∫

Ω

(

φ(·, y)− φ(·, ȳ)− φy(·, ȳ)(y − ȳ)
)

p̄ dx. (13)

2.1. Conditions involving the sign of p̄

A natural first idea to deduce global optimality from (12) consists in identifying
situations in which R(u) ≤ 0 for all u ∈ Uad. We have the following result:

Theorem 2 Suppose that there exists an interval I ⊂ R such that y 7→ φ(x, y)
is convex (concave) on I for almost all x ∈ Ω. Furthermore, assume that for
every u ∈ Uad the solution y = G(u) with ya ≤ y ≤ yb in K satisfies y(x) ∈ I
for all x ∈ Ω. If p̄ ≤ 0 (p̄ ≥ 0) a.e. on Ω, then ū is the unique global minimum
of (P).

Proof Suppose that y 7→ φ(x, y) is convex. Then our assumptions imply that

φ(x, y(x)) − φ(x, ȳ(x)) − φy(x, ȳ(x))(y(x) − ȳ(x)) ≥ 0 for almost all x ∈ Ω

which yields that R(u) ≤ 0, since p̄ ≤ 0 a.e. in Ω. Hence, J(u) > J(ū) for u 6= ū
by (12). 2

In general, we cannot expect the adjoint variable p̄ to have a sign without
additional conditions on the data of the problem. The following result is similar
in spirit to a sufficient condition involving a suitable bound on y0, obtained in
Mignot (1976), Theorem 5.4 and in Ito and Kunisch (2000), Section 5.2, for the
optimal control of the obstacle problem.

Lemma 1 Suppose that K = ∅ and that ua = 0, ub < ∞. Let yb ∈ H2(Ω) satisfy

−∆yb + φ(·, yb) ≥ ub in Ω, yb ≥ 0 on ∂Ω.

Then 0 ≤ G(u) ≤ yb in Ω̄ for every u ∈ Uad. Also, if y0 ≥ yb a.e. in Ω, then
p̄ ≤ 0 in Ω.

Proof Let u ∈ Uad and set y = G(u). If we test (5) with v = y− we have
∫

Ω

|∇y−|2 dx = −
∫

Ω

φ(·, y−) y− dx+

∫

Ω

u y− dx ≤ 0

using (3), the fact that φ(·, 0) = 0, as well as u ≥ 0. We infer that y− ≡ 0 and
hence y ≥ 0 in Ω̄. Next, y − yb satisfies

−∆(y − yb) + [φ(·, y)− φ(·, yb)] ≤ u− ub ≤ 0 a.e. in Ω.
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Testing with (y−yb)
+ then gives y ≤ yb in Ω̄. Finally, since K = ∅, the adjoint

state satisfies

−∆p̄+ φy(·, ȳ)p̄ = ȳ − y0 ≤ yb − y0 ≤ 0 a.e. in Ω

since ȳ ≤ yb by what we have already shown. We infer that p̄ ≤ 0 in a similar
way as above. 2

Example 1 Let a ∈ L∞(Ω) with a ≥ 0 a.e. in Ω. Then, the functions φ(x, y) =
ea(x)y − 1 and φ(x, y) = a(x)|y|q−2y (q ≥ 3) are convex on R and [0,∞),
respectively. Hence if K = ∅ and ua, ub and y0 are chosen as in Lemma 1,
then Theorem 2 and Lemma 1 imply that a solution of the necessary first order
conditions will be the unique global minimum of (P).

2.2. Conditions involving a bound on ‖p̄‖Lq

As mentioned above, it will in general not be possible to establish a sign on
the adjoint variable p̄, so that one is left with trying to bound |R(u)| in terms
of 1

2‖y − ȳ‖2L2(Ω) +
α
2 ‖u− ū‖2L2(Ω). In what follows we shall assume that there

exists γ ∈ [0, 1) and M ≥ 0 such that

∣

∣

∣

φy(x, y2)− φy(x, y1)

y2 − y1

∣

∣

∣
≤ M

(φ(x, y2)− φ(x, y1)

y2 − y1

)γ

(14)

for almost all x ∈ Ω and for all y1, y2 ∈ R, y1 6= y2. Note that (14) holds with
γ = 0 if y 7→ φy(x, y) is globally Lipschitz uniformly in x ∈ Ω. Furthermore,
it is not difficult to verify that (14) is satisfied with γ = 1

r , provided that (9)
holds.

Example 2 Let φ(x, y) = a(x)|y|q−2y, where q ≥ 3 and a ∈ L∞(Ω)
with a(x) ≥ 0 a.e. in Ω. Then, φ satisfies (14) with γ = q−3

q−2 and

M = (q − 2)(q − 1)
1

q−2 ‖a‖
1

q−2

L∞(Ω).

In what follows we shall make use of the elementary inequality (see, e.g.,
Ahmad Ali, Deckelnick and Hinze, 2016, Lemma 7.1)

aλbµ ≤ λλµµ

(λ+ µ)λ+µ
(a+ b)λ+µ, a, b ≥ 0, λ, µ > 0, (15)

as well as of the Gagliardo–Nirenberg interpolation inequality

‖f‖Lq ≤ Cq‖f‖1−θ
L2 ‖∇f‖θL2 (16)

where θ = d(12 − 1
q ) and 2 ≤ q < ∞ if d = 2 and 2 ≤ q ≤ 6 if d = 3. Explicit

values for the constant Cq in (16) can, e.g., be found in Nasibov (1990) and
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Veling (2002), see also Ahmad Ali, Deckelnick and Hinze (2016), Theorem 7.3.
Before we state our main result we mention that it is well known that p̄ ∈
W 1,s

0 (Ω) for all s ∈ [1, d
d−1 ). In particular we infer, with the help of a standard

embedding result, that

p̄ ∈ Lq(Ω)

{

for every 1 ≤ q < ∞ if d = 2;
for every 1 ≤ q < 3 if d = 3.

(17)

Furthermore, we have that

p̄ ∈ L∞(Ω) if K = ∅ or K = Ω̄ with ya, yb ∈ W 2,∞(Ω). (18)

In order to see (18) we note that p̄ ∈ H2(Ω) →֒ L∞(Ω) by elliptic regularity
theory if K = ∅. On the other hand, if K = Ω̄ with ya, yb ∈ W 2,∞(Ω) we
may apply Theorem 3.1 and Section 4.2 of Casas, Mateos and Vexler (2014) to
obtain that p̄ ∈ L∞(Ω).

Theorem 3 Assume that φ satisfies (14) and let (ū, ȳ, p̄, µ̄) ∈ Uad × (H2(Ω) ∩
H1

0 (Ω)) × L2(Ω) ×M(K) be a solution of (5)–(8). Furthermore, choose q > 1
such that

1

1− γ
< q < ∞ if d = 2;

3

2(1− γ)
≤ q < 3 if d = 3 (19)

and define for t := 2q(1−γ)
q(1−γ)−1 and ρ := d

2q + γ the quantity

η(α, q, d) :=
(1− γ

2− γ

)γ−1

M−1C
2(γ−1)
t α

ρ
2 (

d

2q
)−

d
2q γ−γ(2− ρ)

ρ
2−1ρ

ρ
2 , (20)

where Ct is the constant in (16). If the inequality

‖p̄‖Lq ≤ η(α, q, d) (21)

is satisfied, then ū is a global minimum for Problem (P). If the inequality (21)
is strict, then ū is the unique global minimum. The assertions hold for 3

2(1−γ) ≤
q < ∞ and d = 3 provided that K = ∅ or K = Ω̄ with ya, yb ∈ W 2,∞(Ω).

Proof To begin, note that (17) and (18) imply that p̄ ∈ Lq(Ω) for the
cases that we consider. Our starting point is again (12), in which we write the
remainder term as

R(u) =

∫

Ω

p̄(y − ȳ)

1
∫

0

[φy(·, ȳ + t(y − ȳ))− φy(·, ȳ)]dt dx. (22)

We claim that for all y1, y2 ∈ R, y1 6= y2 we have

∣

∣

∣

∫ 1

0

[φy(·, y1 + t(y2 − y1))− φy(·, y1)]dt
∣

∣

∣
(23)

≤ Lγ |y2 − y1|1−2γ
(

(φ(·, y2)− φ(·, y1))(y2 − y1)
)γ
,
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where Lγ = M
(

1−γ
2−γ

)1−γ
and M is given by (14). To see this, let us suppress

temporarily the dependence on x and introduce

φǫ(y) :=

∫

R

ζǫ(z)φ(y − z) dz, y ∈ R,

where (ζǫ)0<ǫ<1 ⊂ C∞
0 (R) is a sequence of mollifiers, satisfying

ζǫ ≥ 0, suppζǫ ⊂ [−ǫ, ǫ], and

∫

R

ζǫ(z) dz = 1.

Since φ′
ǫ(y) =

∫

R
ζǫ(z)φ

′(y − z) dz, we have that

φ′′
ǫ (y) = lim

h→0

∫

R

ζǫ(z)
φ′(y + h− z)− φ′(y − z)

h
dz

so that we obtain with the help of (14) and Hölder’s inequality

|φ′′
ǫ (y)| ≤ M

∫

R

ζǫ(z)(φ
′(y − z))γ dz = M

∫

R

(ζǫ(z))
1−γ

(

ζǫ(z)φ
′(y − z)

)γ
dz

≤ M
(

∫

R

ζǫ(z)φ
′(y − z) dz

)γ

= M(φ′
ǫ(y))

γ .

We may, therefore, apply Lemma 7.2 from Ahmad Ali, Deckelnick and Hinze
(2016) for γ ∈ (0, 1) to deduce that

∣

∣

∣

∫ 1

0

[φ′
ǫ(y1+ t(y2−y1))−φ′

ǫ(y1)]dt
∣

∣

∣
≤ Lγ |y2−y1|

(

∫ 1

0

φ′
ǫ(y1+ t(y2−y1)) dt

)γ

,

but the above estimate easily extends to the case of γ = 0. The bound (23) now
follows by sending ǫ → 0. If we insert (23) into (22), we find that

|R(u)| ≤ Lγ

∫

Ω

|p̄| |y − ȳ|2−2γ
(

(φ(·, y)− φ(·, ȳ))(y − ȳ)
)γ

dx (24)

≤ Lγ ‖p̄‖Lq‖y − ȳ‖2(1−γ)

L2s(1−γ)

(

∫

Ω

(φ(·, y)− φ(·, ȳ))(y − ȳ)dx
)γ

,

where we have used Hölder’s inequality with exponents q, r = 1
γ and s =

q
q(1−γ)−1 . Note that

2s(1− γ) =
2q(1− γ)

q(1− γ)− 1
= t ∈

{

(2,∞), if d = 2;
(2, 6], if d = 3

.

in view of our assumptions on q. We may therefore use (16) in order to estimate
‖y − ȳ‖Lt , and obtain with

θ = d
(1

2
− 1

t

)

=
d

2q(1− γ)
and hence 2(1− γ)θ =

d

q
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that

|R(u)| ≤

Lγ C
2(1−γ)
t ‖p̄‖Lq‖y − ȳ‖2(1−γ)−d

q

L2 ‖∇(y − ȳ)‖
d
q

L2

(

∫

Ω

(φ(·, y)− φ(·, ȳ))(y − ȳ)dx
)γ

.

Applying (15) with λ = d
2q and µ = γ and recalling that ρ = d

2q + γ, we may
continue

|R(u)| ≤ Lγ C
2(1−γ)
t ‖p̄‖Lq‖y − ȳ‖2(1−γ)−d

q

L2

×
( d
2q )

d
2q γγ

ρρ

(

‖∇(y − ȳ)‖2L2 +

∫

Ω

(φ(·, y)− φ(·, ȳ))(y − ȳ)dx
)ρ

.

If we take the difference of the PDEs, satisfied by ȳ and y, and test it with y− ȳ
we easily deduce that

‖∇(y − ȳ)‖2L2 +

∫

Ω

(

φ(·, y)− φ(·, ȳ)
)

(y − ȳ) dx ≤ ‖y − ȳ‖L2‖u− ū‖L2,

which yields

|R(u)| ≤ Lγ C
2(1−γ)
t

( d
2q )

d
2q γγ

ρρ
‖p̄‖Lq‖y − ȳ‖2(1−γ)−d

q
+ρ

L2 ‖u− ū‖ρL2

= 2Lγ C
2(1−γ)
t α− ρ

2

( d
2q )

d
2q γγ

ρρ
‖p̄‖Lq

(1

2
‖y − ȳ‖2L2

)1− ρ
2
(α

2
‖u− ū‖2L2

)

ρ
2 .

Using once more (15), this time with λ = 1− ρ
2 , µ = ρ

2 , we finally deduce that

|R(u)| ≤

2Lγ C
2(1−γ)
t α− ρ

2

( d
2q )

d
2q γγ

ρρ
(

1− ρ

2

)1− ρ
2
(ρ

2

)

ρ
2 ‖p̄‖Lq

(1

2
‖y − ȳ‖2L2 +

α

2
‖u− ū‖2L2

)

= Lγ C
2(1−γ)
t α− ρ

2 (
d

2q
)

d
2q γγ(2− ρ)1−

ρ
2 ρ−

ρ
2 ‖p̄‖Lq

(1

2
‖y − ȳ‖2L2 +

α

2
‖u− ū‖2L2

)

.

If we use this estimate in (12) and recall (20), as well as Lγ = M
(

1−γ
2−γ

)1−γ
,

we infer that J(u) − J(ū) ≥ 0, provided that (21) holds, so that ū is a global
solution of problem (P). If the inequality in (21) is strict, then ū is the unique
global minimum of problem (P). 2

Remark 1 Suppose that d = 2 and that φ satisfies (9) for some r > 1,M ≥ 0,
so that (14) holds with γ = 1

r . If we set q := 3r−2
r−1 , then q satisfies (19) while

t = q and ρ = 1
q + 1

r = r+q
rq , so that Theorem 1 is a special case of Theorem 3.
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3. Variational discretization

In this section, we consider the case of d = 2 and we let Th be an admissible
triangulation of Ω ⊂ R

2. We introduce the following spaces of linear finite
elements:

Xh := {vh ∈ C0(Ω̄) : vh|T is a linear polynomial on each T ∈ Th},
Xh0 := {vh ∈ Xh : vh|∂Ω = 0}.

The Lagrange interpolation operator Ih is defined by

Ih : C0(Ω̄) → Xh, Ihy :=

n
∑

i=1

y(xi)φi,

where x1, . . . , xn denote the nodes in the triangulation Th and {φ1, . . . , φn}
is the set of basis functions of the space Xh, which satisfy φi(xj) = δij . We
discretize (1), (2), using numerical integration for the nonlinear part: for a given
u ∈ L2(Ω), find yh ∈ Xh0 such that

∫

Ω

∇yh · ∇vh + Ih[φ(·, yh)vh] dx =

∫

Ω

uvh dx ∀ vh ∈ Xh0. (25)

Using the monotonicity of y 7→ φ(·, y) and the Brouwer fixed-point theorem one
can show that (25) admits a unique solution yh =: Gh(u) ∈ Xh0. The variational
discretization (see Hinze, 2005) of Problem (P) then reads:

(Ph)
minu∈Uad

Jh(u) :=
1
2‖yh − y0‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to yh = Gh(u), ya(xj) ≤ yh(xj) ≤ yb(xj), xj ∈ Nh,

where Nh := {xj |xj is a node of T ∈ Th, such that T ∩ K 6= ∅}. It can be
shown that (Ph) has a solution, provided that a feasible point exists. In practice,
candidates for solutions are calculated by solving the system of necessary first
order conditions, which reads: find ūh ∈ Uad, ȳh ∈ Xh0, p̄h ∈ Xh0, µ̄j ∈ R, xj ∈
Nh such that ya(xj) ≤ ȳh(xj) ≤ yb(xj), xj ∈ Nh and

∫

Ω

∇ȳh · ∇vh + Ih[φ(·, ȳh)vh] dx =

∫

Ω

ūhvh dx ∀ vh ∈ Xh0, (26)

∫

Ω

∇p̄h · ∇vh + Ih[φy(·, ȳh)p̄hvh] dx

=

∫

Ω

(ȳh − y0)vh dx+
∑

xj∈Nh

µ̄jvh(xj) ∀ vh ∈ Xh0, (27)

∫

Ω

(p̄h + αūh)(u− ūh) dx ≥ 0 ∀u ∈ Uad, (28)

∑

xj∈Nh

µ̄j(yj − ȳh(xj)) ≤ 0 ∀ (yj)xj∈Nh
, ya(xj) ≤ yj ≤ yb(xj), xj ∈ Nh.

(29)
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In order to formulate the analogue of Theorem 3 we introduce the following
h–dependent norm on Xh:

‖vh‖h,q :=
(

∫

Ω

Ih[|vh|q]dx
)

1
q , vh ∈ Xh, 1 ≤ q < ∞.

Theorem 4 Suppose that φ and q > 1 satisfy the conditions (14) and (19)
respectively and let ūh ∈ Uad, ȳh ∈ Xh0, p̄h ∈ Xh0, (µ̄j)xj∈Nh

be a solution of
(26)–(29). If

‖p̄h‖h,q ≤ (
1

4
)1−γ− 1

q η(α, q, 2), (30)

then ūh is a global minimum for Problem (Ph). If the inequality (30) is strict,
then ūh is the unique global minimum. Here, η(α, q, 2) is defined in (20).

Proof Just as in the continuous case, we obtain for u ∈ Uad with yh = Gh(u)

Jh(u)− Jh(ūh) ≥
1

2
‖yh − ȳh‖2L2(Ω) +

α

2
‖u− ūh‖2L2(Ω) −Rh(u), (31)

where

Rh(u) =

∫

Ω

Ih
[(

φ(·, yh)− φ(·, ȳh)− φy(·, ȳh)(yh − ȳh)
)

p̄h
]

dx

=

∫

Ω

Ih



p̄h(yh − ȳh)

1
∫

0

(φy(·, ȳh + t(yh − ȳh))− φy(·, ȳh))dt



 dx. (32)

If we use (23) then we obtain, as above, with the help of Hölder’s inequality

|Rh(u)| ≤ Lγ

∫

Ω

Ih
[

|p̄h| |yh − ȳh|2−2γ
(

(φ(·, yh)− φ(·, ȳh))(yh − ȳh)
)γ]

dx

≤ Lγ‖p̄h‖h,q‖yh − ȳh‖2(1−γ)
h,2s(1−γ)

(

∫

Ω

Ih [(φ(·, yh)− φ(·, ȳh))(yh − ȳh)] dx
)γ

,

where s = q
q(1−γ)−1 . Applying Lemma 2 from the Appendix, we derive

|Rh(u)|

≤ Lγ4
1
s ‖p̄h‖h,q‖yh − ȳh‖2(1−γ)

L2s(1−γ)

(

∫

Ω

Ih [(φ(·, yh)− φ(·, ȳh))(yh − ȳh)] dx
)γ

,

which is the analogue of (24) up to the factor 41/s. The rest of the proof now fol-
lows in the same way as in Theorem 3, where we use (25) instead of the PDEs. 2

We shall investigate condition (30) for different choices of φ and q in the nu-
merics section. From the numerical analysis point of view, it is also possible to
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examine the convergence of a sequence of solutions (ūh, ȳh, p̄h, (µ̄j)xj∈Nh
)0<h<h0

of (26)–(29) that satisfy (30) uniformly in h. Based on Theorem 1, convergence
in L2(Ω) of (ūh)0<h<h0 to a solution ū of (P) has been obtained in Ahmad Ali,
Deckelnick and Hinze (2016), Theorem 4.2, while an error estimate is proven in
Ahmad Ali (2017), Ahmad Ali, Deckelnick and Hinze (2018), Theorem 3.1. We
expect that these results carry over to the generalized framework, considered in
this paper. In this context we also refer to Neitzel, Pfefferer and Rösch (2015)
as a further contribution to the error analysis for optimal control of semilinear
equations with pointwise bounds on the state. Contrary to our approach,
this work is based on second order sufficient optimality conditions for a local
solution of the control problem and requires, in particular, a C2–nonlinearity
φ.

4. Numerical experiments

In this section we present several numerical experiments, related to Theorem 4.
We consider (P) with different choices for the nonlinearity φ. For each choice we
fix Ω := (0, 1) × (0, 1), while for the desired state y0 we consider the following
two scenarios:

A1: (Reachable desired state) y0(x) := 2 sin(2πx1) sin(2πx2).
A2: (Not reachable desired state) y0(x) := 60 + 160(x1(x1 − 1) + x2(x2 − 1)).

For the control and state bounds we consider the three cases as follows:

Case 1: (Unconstrained problem) ub = −ua = ∞, K = ∅.
Case 2: (Control constrained problem) ub = −ua = 5, K = ∅.
Case 3: (State constrained problem) ub = −ua = ∞, K = Ω̄, yb ≡ −ya ≡ 1.

For α, we report numerical results for the values α = 10i, i = −6,−5, . . . , 3.
The domain Ω is partitioned using a uniform triangulation with mesh size
h = 2−5

√
2, generated with the POIMESH command from MATLAB, and the

discrete counterpart of the problem is as in Section 3. The resulting discrete
optimality system (26)–(29) is solved using the semismooth Newton method.

Example 3 We consider φ(y) := y|y|. Then, γ = 0 with M = 2. Taking q = 2,
the condition reads

‖p̄h‖h,2 ≤
1

2
η(α, 2, 2)

with

C−2
4 ≈ 2.381297723376159.

The results are reported in Fig. 1. We see that in the light of Theorem 4, the
unique global solution of the considered control problem has been computed for
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all given values of α, except for Case 2, when α ≤ 10−3. There, no conclusion
can be derived. However, with the coefficient a(x) := 1

8 we obtain a global
unique solution for the whole considered parameter range, see Fig. 2.

Example 4 We consider φ(y) := y3. Then, γ = 0.5 with M = 2
√
3. Taking

q = 3, the condition reads

‖p̄h‖L3(Ω) ≤ η(α, 3, 2)

with

C−1
6 ≈ 1.616080082127768.

The choice of q = 3 is motivated by fact that among the possible choices of the
Gagliardo-Nirenberg constant, the value of C6 is among the smallest possible
ones, see Ahmad Ali, Deckelnick and Hinze (2016), Fig. 4. The integrals involv-
ing φ, and the norm ‖p̄h‖L3(Ω) are computed exactly. The results are reported in
Fig. 3. We also include, for comparison, the results for q = 4, which correspond
to the findings of Ahmad Ali, Deckelnick and Hinze (2016), Example 2. As one
can see, this choice, in some situations, delivers larger uniqueness intervals for
α. Overall, uniqueness of the global solution can be deduced for certain ranges
of the parameter α, where uniqueness is more likely in the case of a reachable
desired state y0.

Example 5 We consider φ(y) := y5. Then, γ = 3/4 with M = 4 × (5)1/4.
Taking q = 6, the condition reads

‖p̄h‖L6(Ω) ≤ η(α, 6, 2)

with

C
−1/2
6 ≈ 1.271251384316953.

The choice of q = 6 is motivated as in the previous example. This, then, is the
situation of Ahmad Ali, Deckelnick and Hinze (2016), Example 3. For compari-
son, we also include the results obtained with quadrature based on the estimate
(30). As one can see, the difference in both approaches (exact integration versus
quadrature) is negligible. The results are reported in Fig. 4.

5. Appendix

Lemma 2 Let d = 2 and 2 ≤ q < ∞. Then

‖vh‖Lq ≤ ‖vh‖h,q ≤ 4
1
q ‖vh‖Lq for all vh ∈ Xh.

Proof Let us denote by T̂ ⊂ R
2 the unit simplex with vertices â0 =

(0, 0), â1 = (1, 0), and â2 = (0, 1). Using a scaling argument it is sufficient to
show that

∫

T̂

|p|q dx̂ ≤
∫

T̂

Îh[|p|q]dx̂ ≤ 4

∫

T̂

|p|q dx̂ for all p ∈ P1(T̂ ), (33)
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Figure 1: Results for φ(s) = s|s|
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Figure 2: Case 2 with A2 for φ(s) = 1
8s|s|

where Îhf =
∑2

j=0 f(âj)φ̂j and φ̂j(âi) = δij . In order to see the first inequality
in (33) we observe that

∫

T̂

|p|q dx̂ =

∫

T̂

|
2

∑

j=0

p(âj)φ̂j |qdx̂ ≤
∫

T̂

2
∑

j=0

|p(âj)|qφ̂j dx̂ =

∫

T̂

Îh[|p|q]dx̂

in view of the convexity of t 7→ |t|q and the properties of φ̂j , j = 0, 1, 2. Let us
next consider the remaining estimate and first focus on the case of q = 2. A
straightforward calculation shows that

∫

T̂

Îh[|p|2]dx̂ =
1

6

2
∑

j=0

|p(âj)|2,

∫

T̂

|p|2 dx̂ =
1

24

2
∑

j=0

|p(âj)|2 +
1

24
|p( â0 + â1 + â2

3
)|2,

which implies that
∫

T̂

Îh[|p|2]dx̂ ≤ 4

∫

T̂

|p|2 dx̂. (34)

Let us introduce the measure µ :=
∑2

j=0 mjδâj
with mj =

∫

T̂
φ̂jdx̂ = 1

6 , j =
0, 1, 2. Clearly,

‖p‖qLq(µ) :=

∫

T̂

|p|qdµ =

2
∑

j=0

|p(âj)|qmj =

∫

T̂

Îh[|p|q]dx̂.

Now, (34) yields that ‖p‖L2(µ) ≤ 2‖p‖L2(dx̂), while ‖p‖L∞(µ) ≤ ‖p‖L∞(dx̂),
so that the Riesz–Thorin convexity theorem implies that

‖p‖Lq(µ) ≤ 2
2
q ‖p‖Lq(dx̂) for all p ∈ P1(T̂ ), which is (33). 2
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Figure 3: Results for φ(s) = s3
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Figure 4: Results for φ(s) = s5
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