PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Case Study on Building Information (BIM) and Land Information (LIM) Models Including Geospatial Data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Landscape information modeling (LIM) is a new trend in spatial projects made using BIM technology. Elements of land development are, not only in the opinion of the authors, just as essential as the element of a building object. In turn, GIS data can be used to model larger areas based on combined data from GIS and BIM models. The lack of the strict integration of BIM and GIS (ISO/TR 23262:2021 covers GIS/BIM interoperability, ISO 19166 is in preparation) prevents the modeling of land development objects, both existing and planned, in many cases. The modeling process using the current and known BIM tools and processes were presented to efficiently develop a model of a building object with its surroundings. Modeling took place using best practices that are collected and used in the Polish reality. The work presents an object-oriented approach to modeling elements of spatial development with the preservation of the so-called occupational hygiene. By applying the above principles, it is possible to develop a “good” LIM model that fits the current trends and developments in BIM.
Słowa kluczowe
EN
BIM   LIM   GIS   integration data  
Rocznik
Strony
19--34
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Geodesy and Cartography, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Geodesy and Cartography, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Geodesy and Cartography, Warsaw, Poland
Bibliografia
  • 1. Borkowski A.S., Wyszomirski M.: Landscape information modelling: an important aspect of BIM modelling, examples of cubature, infrastructure, and planning projects. Geomatics, Landmanagement and Landscape, no. 1, 2021, pp. 7–22. https://doi.org/10.15576/GLL/2021.1.7.
  • 2. Zajíčková V., Achten H.: Landscape Information Model: Plants as the components for information modelling. [in:] Stouffs R., Sariyildiz S. (eds.), eCAADe 2013: Computation and Performance. Volume 2: Proceedings of the 31st International Conference on Education and research in Computer Aided Architectural Design in Europe: 18–20 September 2013, Delft, The Netherlands, eCAADe, Faculty of Architecture, Delft University of Technology, pp. 515–523.
  • 3. Isikdag U., Underwood J., Aouad G.: An investigation into the applicability of building information models in geospatial environment in support of site selection and fire response management processes. Advanced Engineering Informatics, vol. 22(4), 2008, pp. 504–519. https://doi.org/10.1016/j.aei.2008.06.001.
  • 4. Isikdag U., Zlatanova S.: Towards defining a framework for automatic generation of buildings in CityGML using building information models. [in:] Lee J., Zlatanova S. (eds.), 3D Geo-Information Sciences, Springer, Berlin, Heidelberg 2009, pp. 79–96. https://doi.org/10.1007/978-3-540-87395-2_6.
  • 5. Fosu R., Suprabhas K., Rathore Z., Cory C.: Integration of Building Information Modeling (BIM) and Geographic Information Systems (GIS) – a literature review and future needs. [in:] Proceedings of the 32nd International Conference of CIB W78, Eindhoven, The Netherlands, 27–29 October, pp. 196–204.
  • 6. Zhu J., Wang X., Wang P., Wu Z., Kim M.J.: Integration of BIM and GIS: Geometry from IFC to shapefile using open-source technology. Automation in Construction, vol. 102, pp. 105–119, 2019. https://doi.org/10.1016/j.autcon.2019.02.014.
  • 7. Rafiee A., Dias E., Fruijtier S., Scholten H.: From BIM to Geo-analysis: View Coverage and Shadow Analysis by BIM/GIS Integration. Procedia Environmental Sciences, vol. 22, pp. 397–402, 2014. https://doi.org/10.1016/j.proenv.2014.11.037.
  • 8. Amirebrahimi S., Rajabifard A., Mendis P., Ngo T.: A data model for integrating GIS and BIM for assessment and 3D visualisation of flood damage to building. [in:] Veenendaal B., Kealy A. (eds.), Research@Locate’15: Proceedings of Research@ Locate 15 in conjunction with Locate 15: Brisbane, Australia, March 10–12, 2015, 2015, pp. 78–89.
  • 9. Amirebrahimi S., Rajabifard A., Mendis P., Ngo T.: A framework for a microscale flood damage assessment and visualization for a building using BIM-GIS integration. International Journal of Digital Earth, vol. 9(4), 2016, pp. 363–386. https://doi.org/10.1080/17538947.2015.1034201.
  • 10. Hjelseth E., Thiis T.: Use of BIM and GIS to enable climatic adaptations of buildings. [in:] Zarli A., Scherer R. (eds.), eWork and eBusiness in Architecture, Engineering and Construction: ECPPM 2008, CRC Press, 2008, pp. 409–418.
  • 11. Stouffs R.: A Triple Graph Grammar Approach to Mapping IFC Models into CityGML Building Models. [in:] Fukuda T., Huang W., Janssen P., Crolla K., Alhadidi S. (eds.), Learning, Prototyping and Adapting: Proceedings of the 23rd International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2018). Volume 2, Association for Computer-Aided Architectural Design Research in Asia (CAADRIA). Honk Kong 2018, pp. 41–50. https://doi.org/10.52842/conf.caadria.2018.2.041.
  • 12. Olsson P.-O., Axelsson J., Hooper M., Harrie L.: Automation of Building Permission by Integration of BIM and Geospatial Data. ISPRS International Journal of Geo-Information, vol. 7(8), 2018, 307. https://doi.org/10.3390/ijgi7080307.
  • 13. Jusuf S.K., Mousseau B., Godfroid G., Soh J.H.V.: Path to an Integrated Modelling between IFC and CityGML for Neighborhood Scale Modelling. Urban Science, vol. 1(3), 2017, 25. https://doi.org/10.3390/urbansci1030025.
  • 14. Colucci E., De Ruvo V., Lingua A., Matrone F., Rizzo G.: HBIM-GIS Integration: From IFC to CityGML Standard for Damaged Cultural Heritage in a Multiscale 3D GIS. Applied Sciences, vol. 10(4), 2020, 1256. https://doi.org/10.3390/app10041356.
  • 15. Matrone F., Colucci E., De Ruvo V., Lingua A., Spanò A.: HBIM in a semantic 3D GIS database. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2-W11, 2019, pp. 857–865. https://doi.org/10.5194/isprs-archives-XLII-2-W11-857-2019.
  • 16. Nagel C., Stadler A., Kolbe T.H.: Conceptual Requirements for the Automatic Reconstruction of Building Information Models from Uninterpreted 3D Models. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, vol. XXXVIII-3-4/C3, 2009, pp. 46–79.
  • 17. Chen L.-C., Wu C.-H., Shen T.-S., Chou C.-C.: The application of geometric network models and building information models in geospatial environments for fire-fighting simulations. Computers, Environment and Urban Systems, vol. 45, 2014, pp. 1–12. https://doi.org/10.1016/j.compenvurbsys.2014.01.003.
  • 18. Isikdag U., Zlatanova S.: A SWOT analysis on the implementation of Building Information Models within the geospatial environment. [in:] Krek A., Rumor M., Zlatanova S., Fendel E.M. (eds.), Urban and Regional Data Management: UDMS 2009 Annual, CRC Press, 2009. https://doi.org/10.1201/9780203869352-5.
  • 19. Hagedorn B., Trapp M., Glander T., Döllner J.: Towards an Indoor Level-of-Detail Model for Route Visualization. [in:] MDM ’09: Proceedings of the 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, IEEE, 2009, pp. 692–697. https://doi.org/10.1109/MDM.2009.118.
  • 20. Hor A.-H., Sohn G., Claudio P., Jadidi M., Afnan A.: A Semantic Graph Database for BIM-GIS Integrated Information Model for an Intelligent Urban Mobility Web Application. The ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-4, 2018, pp. 89–96. https://doi.org/10.5194/isprs-annals-IV-4-89-2018.
  • 21. l-Mekawy M., Östman A.: Semantic Mapping: An Ontology Engineering Method for Integrating Building Models. [in:] 3rd ISDE Digital Earth Summit, 12–14 June, 2010, Nessebar, Bulgaria, 2010.
  • 22. El-Mekawy M., Östman A., Shahzad K.: Towards Interoperating CityGML and IFC Building Models: A Unified Model Based Approach. [in:] 5th International 3D GeoInfo Conference, Springer, Berlin 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-52033 [access: 17.02.2020].
  • 23. El-Mekawy M., Östman A., Hijazi I.: A Unified Building Model for 3D Urban GIS. ISPRS International Journal of Geo-Information, vol. 1(2), 2012, pp. 120–145. https://doi.org/10.3390/ijgi1020120.
  • 24. de Laat R., van Berlo L.: Integration of BIM and GIS: The development of the CityGML GeoBIM extension. [in:] Kolbe T., König G., Nagel C. (eds.), Advances in 3D Geo-Information Sciences, Lecture Notes in Geoinformation and Cartography, Springer, Berlin, Heidelberg 2011, pp. 211–225. https://doi.org/10.1007/978-3-642-12670-3_13.
  • 25. Döllner J., Hagedorn B.: Integrating urban GIS, CAD and BIM data by service-based virtual 3D city models. [in:] Rumor M., Coors V., Fendel E.M., Zlatanova S. (eds.), Urban and Regional Data Management: UDMS 2007 Annual, CRC Press, 2007, pp. 157–170.
  • 26. Lapierre A., Cote P.-M.: Using Open Web Services for urban data management: A testbed resulting from an OGC initiative for offering standard CAD/GIS/BIM services. [in:] Rumor M., Coors V., Fendel E.M., Zlatanova S. (eds.), Urban and Regional Data Management: UDMS 2007 Annual, CRC Press, 2007, pp. 381–393.
  • 27. Karan E.P., Irizarry J.: Extending BIM interoperability to preconstruction operations using geospatial analyses and semantic web services. Automation in Construction, vol. 53, 2015, pp. 1–12. https://doi.org/10.1016/j.autcon.2015.02.012.
  • 28. Deng Y., Cheng J.C.P., Anumba C.: Mapping between BIM and 3D GIS in different levels of detail using schema mediation and instance comparison. Automation in Construction, vol. 67, 2016, pp. 1–21. https://doi.org/10.1016/j.autcon.2016.03.006.
  • 29. Wang H., Pan Y., Luo X.: Integration of BIM and GIS in sustainable built environment: A review and bibliometric analysis. Automation in Construction, vol. 103, 2019, pp. 41–52. https://doi.org/10.1016/j.autcon.2019.03.005.
  • 30. Tobiáš P.: BIM, GIS and semantic models of cultural heritage buildings. Geoinformatics FCE CTU, vol. 15(2), 2016, pp. 27–42. https://doi.org/10.14311/gi.15.2.3.
  • 31. Zhao L., Liu Z.-S., Mbachu J.: An Integrated BIM-GIS Method for Planning of Water Distribution System. ISPRS International Journal of Geo-Information, vol. 8(8), 2019, 331. https://doi.org/10.3390/ijgi8080331.
  • 32. Ismail M.H., Ishak S.S.M., Osman M.: Role of BIM+GIS checker for improvement of technology deployment in infrastructure projects. IOP Conference Series: Materials Science and Engineering, vol. 512, 2019, 012038. https://doi.org/10.1088/1757-899X/512/1/012038.
  • 33. Rahman S.A.F.S.A., Maulud K.N.A.: Approaching BIM-GIS Integration for 3D Evacuation Planning Requirement Using Multipatch Geometry Data Format. IOP Conference Series: Earth and Environmental Science, vol. 38, 20195, 012033. https://doi.org/10.1088/1755-1315/385/1/012033.
  • 34. Beck S.F., Abualdenien J., Hijazi I.H., Borrmann A., Kolbe T.H.: Analyzing Contextual Linking of Heterogeneous Information Models from the Domains BIM and UIM. ISPRS International Journal of Geo-Information, vol. 10(12), 2021, 807. https://doi.org/10.3390/ijgi10120807.
  • 35. Noardo F., Harrie L., Ohori Arroyo K., Biljecki F., Ellul C., Krijnen T., Eriksson H. et al.: Tools for BIM-GIS Integration (IFC Georeferencing and Conversions): Results from the GeoBIM Benchmark 2019. ISPRS International Journal of Geo-Information, vol. 9(9), 2020, 502. https://doi.org/10.3390/ijgi9090502.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d168319b-c80a-4eec-9816-ca6e8ae06757
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.