PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of Nano Aluminium Powder (NAP) using a Thermal Plasma: Process Development and Characterization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A bottom up approach for the preparation of Nano Aluminium Powder (NAP) using a Transferred Arc Thermal Plasma Reactor (TAPR) is described. The aluminium block is subjected to evaporation by the application of a thermal plasma. The aluminium vapour produced is rapidly quenched to room temperature resulting in crystallization of the aluminium vapour in nano-particulate form. Various process parameters, such as the plasma torch power, reactor pressure and plasma gas composition were optimized. This paper also describes the characterization of NAP by analytical methods, for the estimation of the Active Aluminium Content (AAC), Total Aluminium Content (TAC), XRD, bulk density, BET surface area, HR-TEM etc. The results are compared with those for samples prepared in other thermal plasma reactors, such as the DC Arc Plasma Reactor (DCAPR) and the RF Induction Thermal Plasma Reactor (RFITPR), and for commercially available NAP samples (ALEX, prepared by the EEW technique).
Rocznik
Strony
53--71
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
autor
  • Centre for Materials for Electronics Technology, Panchavati, Off Pashan Road, Pune-411008, India
autor
  • Centre for Materials for Electronics Technology, Panchavati, Off Pashan Road, Pune-411008, India
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
Bibliografia
  • [1] De Luca L.T., Galfetti L., Severini F., Meda L., Marra G., Vorozhtsov A.B., Sedoi V.S., Babuk V.A., Burning of Nano-aluminized Composite Rocket Propellants, Combustion, Explosion, and Shock Waves (Engl. Transl.), 2005, 41, 680-692.
  • [2] Sundaram D.S., Yang V., Zarko V.E., Combustion of nano aluminium particles (Review), Combustion, Explosion, and Shock Waves (Engl. Transl.), 2015, 51(2), 173-196.
  • [3] Ivanov Y.F., Osmonoliev M.N., Sedoi V.S., Arkhipov V.A., Bondarchuk S.S., Vorozhtsov A.B., Korotkikh A.G., Kuznetsov V.T., Productions of Ultra-fine Powders and Their Use in High Energetic Compositions, Propellants Explos. Pyrotech., 2003, 28, 319-333.
  • [4] Mench M.M., Yeh C.L., Kuo K.K., Propellant Burning Rate Enhancement and Thermal Behavior of Ultra-fine Aluminium Powder (ALEX), 29th Int. Annu. Conf. ICT: Energetic Materials, Production, Processing and Characterisation, Karlsruhe, Germany, 1998, 30, (1-15).
  • [5] Simonenko V.N., Zarko V.E., Comparative Studying and the Combustion Behaviour of Composite Propellants Containing Ultrafine Aluminium, 30thInt. Annu Conf. ICT: Energetic Materials: Modelling of Phenomena, Experimental Characterization, Environmental Engineering, Karlsruhe, Germany, 1999, 21/1.
  • [6] Mench M.M., Kuo K.K., Yeh C.L., Lu Y.C., Comparison of Thermal Behaviour of Regular and Ultra-fine Aluminium Powders (Alex) Made from Plasma Explosion Process, Comb. Sci. Technol., 1998, 135, 269-292.
  • [7] Meziani M.J., Bunker C.E., Lu F., Li H., Wang W., Guliants E.A., Quinn R.A., Sun Y.P., Formation and Properties of Stabilised Aluminium Nanoparticles, ACS Appl. Mater. Interfaces, 2009, 1(3), 703-709.
  • [8] Ivanov Y.F., Osmonoliev M.N., Sedoi V.S., Arhipov V.A., Bondarchuk S.S., Vorozhtsov A.B., Korotkikh A.G., Kuznetsov V.T., Production of Ultra-fine Powders and Their Use in High Energetic Compositions, Propellants Explos. Pyrotech., 2003, 28(6), 319-333.
  • [9] Dreizin E.L., Metal-based Reactive Nanomaterials, Progress in Energy and Combustion Science, 2009, 35, 141-167.
  • [10] Lessard P., Beaupre F., Brousseau P., Burn Rate Studies of Composite Propellants Containing Ultrafine Metals, 32nd Int. Annu. Conf. ICT, Karlsruhe, Germany, 2001, 88.
  • [11] Piercey D.G., Klapötke T.M., Nanoscale Aluminum − Metal Oxide (Thermite) Reactions for Application in Energetic Materials, Cent. Eur. J. Energ. Mater., 2010, 7(2), 115-129.
  • [12] Firooz A., A New Approach to Understanding the Mechanism and Effect of Phase Change of Aluminum in Aluminum Nanoparticles Oxidation: An Experimental Study, International Journal of Scientific & Engineering Research, 2014, 5(9), 384-388.
  • [13] Puszynski J.A., Formation, Characterization and Reactivity of Nanoenergetic Powders, 29th Int. Pyrotechnic Conf., Colorado, USA, 2002, 191.
  • [14] Gen M.Y., Ziskin M.S., Petrov Y.I., Study of Size Distribution of Al Aerosol in Dependence of Operational Conditions (in Russian), Doklady AN SSSR, 1959, 127, 366-368.
  • [15] Gen M.Y., Miller A., A Method of Obtaining Metal Aerosols (in Russian), USSR Inventors, Certificate No. 814432, Bulletin of Invention, 1981, (11), 25.
  • [16] Groza J.R., Sintering of Nanocrystalline Powders, Int. J. Powder Metallurgy, 1999, 35(7), 59-66.
  • [17] Hull M., Tetronics: Plasma Processing Holds Key to Consistent Nanopowders, Powder Metall., 2002, 45(1), 8-9.
  • [18] Paskalov G., Plasma Processing of Aluminium Nano-fuel; http://www.ispcconference. org/ispcproc/ispc20/3.pdf
  • [19] Settumba N., Garrick S.C., Modeling and Simulation of Nano-aluminium Synthesis in a Plasma Reactor, in: Advancement in Energetic Materials and Chemical Propulsion, Begell House Inc., (K.K. Kuo, J.D. Rivera, Eds.), 2007, pp. 643-655, ISBN 978-1-56700-239-3.
  • [20] Jiayin G., Xiaobao F., Dolbec R., Siwen X., Jurewicz J., Boulos M., Development of Nanopowder Synthesis Using Induction Plasma, Plasma Sci. Technol., 2010, 12(2), 188.
  • [21] Kearns M., Development and Applications of Ultrafine Aluminium Powders, Mater. Sci. Eng. A, 2004, 375-377, 120-126.
  • [22] Seo J.-HO and Hong B.-G., Thermal Plasma Synthesis of Nano-Sized Powders, Nuclear Engineering and Technology, 2012, 44(1), 9-20.
  • [23] Yamamoto N., Nishiyama T., Nagayama K., Process Controlled Synthesis of Aluminum Nanoparticles as a Next Generation Propellant; http://www.aero. kyushu-u.ac.jp/aml/laser/Al%20nano.pdf
  • [24] Schroder K.A., Jackson D.K., Radial Pulse Arc Discharge Gun for Synthesizing Nanopowders, Patent US 2005/0000950 A1, Jan 2005.
  • [25] Yanik B. Agustos H., Ipek Y., Koyun A., Uzunsoy D., Synthesis and Characterization of Aluminium Nanoparticles by Electric Arc Technique, Arab J. Sci. Eng, 2013, 38, 3587-3592.
  • [26] Faraji M., Poursalehi R., Fkhazraei A., The Effect Of Surfactant on Colloidal Stability, Oxidation and Optical Properties of Aluminium Nanoparticles via DC Arc Discharge in Water, Procedia Materials Science, 2015, 11, 684-688.
  • [27] Zelinskii V.Y., Yavorovskii N.A., Proskurovskaya L.T., Davydovich V.I., Structural State of Aluminium Particles Prepared by Electric Explosion (in Russian), Fizika i Khimiya Obrabotki Materialov, 1984, 1, 57-59.
  • [28] Kwon Y.-S., Jung, J,-H., Yavorovsky N.A., Illyn A.P., Kim, J.-S., Ultrafine Powder by Wire Explosion Method, Scr. Mater., 2001, 44(8), 2247-2251.
  • [29] Sarathi R., Sindhu T.K., Chakravarthy S.R., Generation of Nano Aluminium Powder Through Wire Explosion Process and its Characterisation, Mater. Char., 2007, 58, 148-155.
  • [30] Tepper F., Nanosize Powders Produced by Electro-explosion of Wire and Their Potential Applications, Powder Metall., 2000, 43(4), 320-322.
  • [31] Li H., Meziani M.J., Lu F., Bunker C.E., Guliants E.A., Sun Ya-P., Templated Synthesis of Aluminium Nanoparticles-A New Route to Stable Energetic Materials, J. Phys. Chem. C, 2009, 113(48), 20539-20542.
  • [32] Chung S.W., Guliants E.A., Bunker C.E., Hammerstroem D.W., Deng Y., Burgers M.A., Jelliss P.A., Buckner S.W., Capping and Passivation of Aluminium Nanoparticles Using Alkyl Substituted Epoxides, Langmuir, 2009, 25(16), 8883-8887.
  • [33] Foley T.J., Johnson C.E., Higa K.T. Inhibitions of Oxide Formation on Aluminium Nanoparticles by Transition Metal Coating, Chem. Mater., 2005, 17, 4086-4091.
  • [34] Haber J.A., Buhro W.E., Kinetic Instability of Nanocrystalline Aluminium Prepared by Chemical Synthesis; Facile Room-temperature Grain Growth, J. Am. Chem. Soc., 1998, 120, 10847-10855
  • [35] Jouet R.J., Warren A.D., Rosenberg D.M., Bellitto V.J., Park K., Zachariah M.R., Surface Passivation of Bare Aluminium Nanoparticles Using Perfluoroalkyl Carboxylic Acids, Chem. Mater., 2005, 17(11), 2987-2996.
  • [36] Ghanta S.R., Muralidharan K., Chemical Synthesis of Aluminium Nanoparticles, J. Nanopart. Res., 2013, 15, 1715.
  • [37] Gottapu S., Padhi S.K., Krishna M.G., Muralidharan K., Poly(vinylpyrrolidone) Stabilized Aluminium Nanoparticles Obtained by the Reaction of SiCl4 with LiAlH4, New J. Chem. 2015, 39, 5203-5207.
  • [38] Lui Y., Zhao S., Tao D., Liang Z., Huang D., Xu Z., Synthesis of Size Controlled and Discrete Core Shell Aluminium Nanopaticles with a Wet Chemical Process, Mater. Lett., 2014, 121, 54-57.
  • [39] Eom N., Bhuiyan M.H., KimT.-S., HongS.-J., Synthesis and Characterization of Agglomerated Coarse Al Powders Comprising Nanoparticles by Low Energy Ball Milling Process, Mater. Trans., 2011, 52(8), 1674-1678.
  • [40] Abdoli H., Ghanbari M., Baghshahi S., Thermal Stability of Nanostructured Aluminum Powder Synthesized by High-energy Milling, Mater. Sci. Eng. A, 2011, 528, 6702-6707.
  • [41] Eckert J., Holzer J.C. Ahn C.C., Fu Z., Johnson W.L. Melting Behaviour of Nanocrystalline Aluminium Powders, Nanostruct. Mater., 1993, 2, 407-413
  • [42] Munz R.J., Addona T., Cruz A.-C. D., Application of Transferred Arcs to the Production of Nanoparticles, Pure Appl. Chem., 1999, 71, 1889-1897.
  • [43] Watanabe T., Tanaka M., Thermal Plasma Processing for Functional Nanoparticle Synthesis, Proc. 16th ASEAN Regional Symposium on Chemical Engineering, Manila, Philippines, 2009, 47.
  • [44] Fedotova T.D., Malahov V., Glotov O.G., Kiryanova A., Permanganatometric Determination of Metallic Aluminum in Condensed Combustion Products, Sibirskii Khimicheskii Zhurnal, 1992, 2, 37.
  • [45] Glotov O.G., Zyryanov V.Y., The Effect of Pressure on Characteristics of Condensed Combustion Products of Aluminized Solid Propellant, Archivum Combustionis, 1991, 11, (3/4), 251.
  • [46] Fedotova T.D., Glotov O.G., Zarko V.E., Application of Cerimetric Methods forcDetermining the Metallic Aluminum Content in Ultrafine Aluminum Powders,cPropellants Explos. Pyrotech., 2007, 32, 160-164.
  • [47] Fedotova T.D., Glotov O.G., Zarko V.E., Chemical Analysis of Aluminum as Propellant Ingredient and Determination of Aluminum and Aluminum Nitride in Condensed Combustion Products, Propellants Explos. Pyrotech., 2000, 25, 325-332.
  • [48] Chen L., Song W., Lv J., Chen X., Xie C., Research on the Methods to Determine Metallic Aluminum Content in Aluminum Nanoparticles, Mater. Chem. Phys., 2010, 120, 670-675.
  • [49] Bassett J., Denney R.C., Jeffery G.H., Mendham J., Vogel’s Textbook of Quantitative Inorganic Analysis, 4thed., ELBS and Longman, London, 1979.
  • [50] Yang S.-P., Tsai R.-Y., Complexometric Titration of Aluminum and Magnesium Ions in Commercial Antacids. An Experiment for General and Analytical Chemistry Laboratories, J. Chem. Edu., 2006, 83(6), 906.
  • [51] Kwok Q.S.M., Badeen C., Armstrong K., Turcotte R., Jones D.E.G., Gertsman V.Y., Hazard Characterization of Uncoated and Coated Aluminium Nanopowder Compositions, J. Propul. Power, 2007, 23, 659-682.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1641909-381b-4728-94a2-1a1011097f18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.