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Novel dynamic representations of a complex signal in the time-frequency domain in-
cluding: a channelized instantaneous complex frequency (CICF), a complex local group delay
(CLGD) and a channelized instantaneous chirp-rate (CICR) are introduced. The proposed ap-
proach is based on the use of the gradient of the short-time Fourier transform complex phase. An
interpretation of the newly-introduced distributions especially of the CICR is demonstrated by a
chirp-rate estimation of mono- and multicomponent FM signals in the time-frequency domain.
The paper corresponds to a part of the dissertation [1].

INTRODUCTION

The paper covers some issues related to the estimation of FM signal parameters in the
time-frequency domain. The introduced signal representations are derived from the invertible
short-time Fourier transform (STFT). This approach leads to non-stationary signal analysis as
well as processing in the time-frequency domain that are also possible in real-time, where a delay
is introduced mainly by an analyzing window. The paper is focused on the chirp-rate estima-
tion of FM signal components. The above problem is considered among others in [3–6], where
the chirp-rate is estimated by advanced algorithms based on the Hough transformation, statis-
tical methods or using the Wigner conception of signal analysis. In this paper another point of
view is presented: estimation in the joint time-frequency domain. An estimator is proposed that
works in the time-frequency domain locally as much as possible. One limit is the Heisenberg-
Gabor uncertainty principle and the ambiguity function of an analyzing window. Moreover, it
is required that the introduced estimates are reversible in order to provide the ability of direct
processing. In general, the main purpose is to show unknown properties of the STFT in order to
estimate the chirp-rate of FM signals.
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Linden [7] and Hahn [8, 9] proposed a new description of a band-limited finite-energy
complex-valued, especially analytical, signal using the so-called instantaneous complex fre-
quency (ICF). The complex signal with a real and an imaginary parts can be expressed in the
following polar form:

u(t) = a(t) exp
(
jϕ(t)

)
; ∀t u(t) ∈ C; (1)

In this way, the defined waveform marked by u(t) should have non-zero values and has to be
differentiable at every instant. a(t) is the absolute value and ϕ(t) represents the instantaneous
phase of the signal u(t). So its ICF is defined as a derivative of the instantaneous complex phase
of the waveform with respect to time. The ICF consists of the instantaneous frequency (IF) and
the signed instantaneous bandwidth (SIBW). Although the term ICF is not widely used in signals
analysis and processing, their components, the IF and the SIBW independent of each other, are
the subject of many papers, among others [10–12]. The definition of the ICF and an eduction
into a Cartesian form can be formulated as follows:

S(t) =
d
dt

Φ(t) =
d
dt

ln
{
u(t)

}
=

=
d
dt

ln
{
a(t) exp

(
jϕ(t)

)}
=

=
d
dt

{
ln
{
a(t)

}
+ ln

{
exp

(
jϕ(t)

)}}
=

=
d
dt
{
λ(t) + jϕ(t)

}
=

d
dt
λ(t) + j

d
dt
ϕ(t) =

= Σ(t) + jΩ(t); ∀t S(t) ∈ C; ∀t Σ(t),Ω(t) ∈ R

(2)

or
S(t) =

du(t)

dt

/
u(t) (3)

where tmeans time, S(t) is the ICF in rad/s, ln{} represents the operator of a natural logarithm
for complex-valued numbers, Ω(t) is the IF and Σ(t) is the SIBW both in rad/s. Sets or real-
valued and complex-valued numbers are denoted respectively by R and C. The instantaneous
bandwidth (IBW) can be calculated as the absolute value of the SIBW [12]. The sign of the
SIBW expresses a local change of direction of the absolute value of the waveform. In Eq. (2)
the instantaneous complex phase of the signal u(t) is defined as follows:

Φ(t) = ln
{
u(t)

}
= ln

{
a(t) exp

(
jϕ(t)

)}
=

= λ(t) + jϕ(t); ∀t Φ(t) ∈ C; ∀t λ(t), ϕ(t) ∈ R
(4)

where λ(t) is the instantaneous envelop of the waveform u(t).
The complex group delay (CGD) can be defined dually as a derivative of the complex phase

of the signal spectrum with respect to frequency. The definition of the CGD and an eduction
into a Cartesian form can be formulated as follows:
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Z(ω) =
d

dω
Ψ(ω) =

d
dω

ln
{
U(ω)

}
=

=
d

dω
ln
{
A(ω) exp

(
jφ(ω)

)}
=

=
d

dω

{
ln
{
A(ω)

}
+ ln

{
exp

(
jφ(ω)

)}}
=

=
d

dω
{

Λ(ω) + jφ(ω)
}

=
d

dω
Λ(ω) + j

d
dω
φ(ω) =

= 0(ω)− jD(ω); ∀ω Z(ω) ∈ C; ∀ωD(ω),0(ω) ∈ R

(5)

or
Z(ω) =

dU(ω)

dω

/
U(ω) (6)

where U(ω) is the Fourier transform of the waveform u(t), ω represents Fourier’s frequency,
D(ω) is the group delay (GD) and 0(ω) represents the so-called signed group duration (SGDR)
both in rad·s. The absolute value of the SGDR is suggested as being the group duration (GDR),
while an SGDR sign expresses a local change of direction of the absolute value of the signal
spectrum. Ψ(ω) is referred to as the complex phase of the Fourier transform U(ω) and is de-
fined as follows:

Ψ(ω) = ln
{
U(ω)

}
= ln

{
A(ω) exp

(
jφ(ω)

)}
=

= Λ(ω) + jφ(ω); ∀ω Ψ(ω) ∈ C; ∀ω Λ(ω), φ(ω) ∈ R
(7)

whereA(ω) is the absolute value of the signal spectrum, or simultaneously the Fourier transform,
U(ω) = A(ω) exp

(
jφ(ω)

)
;A(ω) > 0, Λ(ω) is its natural logarithm and φ(ω) represents a phase

of the Fourier transform. The CGD is rarely described in the scientific press, and one of the few
publications is [13].

Some trends of modern time-frequency representations in scientific literature have been
introduced since Gabor published his famous work: ”Theory of communications” [14]. Many
valuable papers and approaches in this subject were introduced by Rihaczek, Boashash, Kodera,
Nelson, Auger, Flandrin, Stancovic, Fulop, Fitz, Cohen and others. The ICF and the CGD are
useful representations in analyzing single-component signals. However, for multicomponent
signals it is usually not sufficient and the use of, as we see in [11], time-frequency representations,
such as Gabor’s transforms, is recommended. Therefore in this paper the STFT is considered as
a basis for signal analysis and processing [2].

1. TIME-FREQUENCY ANALYSIS
In order to investigate the multicomponent signal and obtain the properties of each com-

ponent separately the use of a time-frequency analysis method is recommended, for example the
short-time Fourier transformation. A multicomponent signal consisting of N components can
be described in the following way:

u(t) =
N∑

n=1

un(t) =
N∑

n=1

an(t) exp
(
jϕn(t)

)
, (8)
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where un(t), an(t) and ϕn(t) denote respectively the n-th component, the envelop and the in-
stantaneous phase of this component. Whereas the STFT of the signal u(t), described in the
time-frequency domain and calculated by using an analyzing window h(t), can be defined as
follows:

U(t, ω) = A(t, ω) exp
(
jφ(t, ω)

)
=

=

∞∫
−∞

u(τ + t)h∗(−τ) exp(−jωτ)dτ ; ∀t∀ω U(t, ω), h(t) ∈ C
(9)

In general, the window h(t) can be complex for example in the chirplet transformation. The
complex phase can be defined for the STFT as follows:

Ψ(t, ω) = ln
{
U(t, ω)

}
= ln

{
A(t, ω) exp

(
jφ(t, ω)

)}
=

= Λ(t, ω) + jφ(t, ω); ∀t∀ω Ψ(t, ω) ∈ C; ∀t∀ω Λ(t, ω), φ(t, ω) ∈ R
(10)

The CICF and CLGD both also described in the joint time-frequency domain are the ana-
logical equivalents of the ICF and the CGD expressed respectively separately in the time and
frequency domain. The CICF can be defined as a partial derivative of the complex phase of the
STFT with respect to time, as follows:

S(t, ω) =
∂

∂t
Ψ(t, ω) =

∂

∂t
ln
{
U(t, ω)

}
=

=
∂

∂t
ln
{
A(t, ω) exp

(
jφ(t, ω)

)}
=

=
∂

∂t

{
ln
{
A(t, ω)

}
+ ln

{
exp

(
jφ(t, ω)

)}}
=

=
∂

∂t

{
Λ(t, ω) + jφ(t, ω)

}
=

∂

∂t
Λ(t, ω) + j

∂

∂t
φ(t, ω) =

= Σ(t, ω) + jΩ(t, ω); ∀t∀ω S(t, ω) ∈ C; Σ(t, ω),Ω(t, ω) ∈ R

(11)

or
S(t, ω) =

∂U(t, ω)

∂t

/
U(t, ω) (12)

where Ω(t, ω) is the channelized instantaneous frequency (CIF), known for instance from Kodera’s
approach [15], referred to as the reassigned spectrogram. Σ(t, ω) represents the signed channel-
ized instantaneous bandwidth (SCIBW), both real-valued and in rad/s. The absolute value of
the SCIBW is known as the channelized instantaneous bandwidth (CIBW).

The CLGD can be defined dually as a partial derivative of the complex phase of the STFT
with respect to frequency as follows:
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Z(t, ω) =
∂

∂ω
Ψ(t, ω) =

∂

∂ω
ln
{
U(t, ω)

}
=

=
∂

∂ω
ln
{
A(t, ω) exp

(
jφ(t, ω)

)}
=

=
∂

∂ω

{
ln
{
A(t, ω)

}
+ ln

{
exp

(
jφ(t, ω)

)}}
=

=
∂

∂ω

{
Λ(t, ω) + jφ(t, ω)

}
=

∂

∂ω
Λ(t, ω) + j

∂

∂ω
φ(t, ω) =

= 0(t, ω)− jD(t, ω); ∀t∀ω Z(t, ω) ∈ C; 0(t, ω), D(t, ω) ∈ R

(13)

or
Z(t, ω) =

∂U(t, ω)

∂ω

/
U(t, ω) (14)

whereD(t, ω) is the local group delay (LGD) also used in Kodera’s approach in order to estimate
the corrections of energy location in time. 0(t, ω) is the novel representation that is suggested
as being called the signed local group duration (SLGDR). Both the LGD and the SLGDR are
expressed in rad·s. The absolute value of the SLGDR can be interpreted as the local group
duration (LGDR) [2].

2. CHANNELIZED INSTANTANEOUS CHIRP-RATE
Nelson, as one of the first authors, described the second-order derivatives of the STFT

phase in applications [16, 17]. He proposed the use of the second-order mixed derivative in
order to develop indicator functions for testing excitations and resonances in acoustics. It seems
that this task can be executed using the introduced CICR that is defined as follows:

A(t, ω) =
Σ(t, ω)

0(t, ω)
=

∂

∂t
Λ(t, ω)

/
∂

∂ω
Λ(t, ω); ∀t∀ω Θ(t, ω) ∈ R (15)

whereA(t, ω) is the CICR expressed in (rad/s) / (rad·s) = (1/s2) = (Hz2). If the values of the
CICR are negative this represents an angular deceleration.

It is assumed that locally, in a very small region of the time-frequency plain, sized ∆t×∆ω,
occurs a linear change of signal parameters, especially the CIF, that can be expressed by a local
chirp-rate estimate. According to the assumption: ∆t→ 0 and ∆ω → 0, the region converges to
a point. For this region, the SLGDR and the SCIBW can be estimated that leads to a deduction of
the local signal energy ”stretch” in time and in frequency. Signs of the SLGDR and the SCIBW
are used in order to designate the growth or decline of the CICR. If the SLGDR is interpreted
as a range in time and the SCIBW as a range in frequency, Eq. (15) is consistent with the
classical chirp-rate interpretation of a linear frequency modulated signal, that is expressed by
the ratio ∆ω/∆t [2].
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Fig. 1. The classical spectrogram and the corresponding accelerogram of the LFM chirp u1(t) defined
by Eq. (16) in presence of the week additive white Gaussian noise where SNR is equal to approx. 25 dB.
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Fig. 2. The classical spectrogram and the corresponding accelerogram of the multicomponent signal
u2(t) defined by Eq. (17) in presence of the week additive white Gaussian noise where SNR is equal

to approx. 25 dB.
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Fig. 3. The classical spectrogram and the corresponding accelerogram of the FM chirp u3(t) defined by
Eq. (18) in presence of the week additive white Gaussian noise where SNR is equal to approx. 25 dB.
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3. FM CHIRPS ANALYSIS
The CICR distribution can be applied in order to analyze mono- and multicomponent FM

signals. The main purpose of this analysis is to obtain a chirp-rate (or frequency sweep) of each
component. In this section, results of the analysis of three test signals are presented:

u1(t) = exp
(
j2πf1t+ jπr1t

2
)
, (16)

u2(t) =
3∑

n=1

exp
(
j2πfnt+ jπrnt

2
)
, (17)

u3(t) = exp
(
− j350 cos(2πtfu)

)
, (18)

where, f1 = 100 Hz, f2 = 50 Hz, f3 = 0 Hz, fu = 1 Hz, r1 = 300 Hz/s, r2 = 200 Hz/s,
r3 = 100 Hz/s.

In Fig. 1, 2 and 3 the classical spectrograms and the accelerograms are presented. The
CICR distributions are denoted by color. If at any point a value of the acceleration exceeds the
range of the color scale, the point is colored black. The test signals are degraded by the additive
white Gaussian noise where signal to noise ratio (SNR) is equal to approx. 25 dB.

4. CONCLUSION
A few representations of the FM signals in the time-frequency domain are presented,

among others the GDR, SGDR, LGDR, LSGDR and LCSD. Special interest is focused on CICR
distribution. The physical interpretation of the CICR is demonstrated through the execution of
numerical experiments, in which FM testing chirp signals are examined. The development of
the local chirp-rate estimator is proposed based on the use of the CICR distribution. Because the
CICR is calculated using the SLGDR and the SCIBW, the utility of all these associated distribu-
tions is demonstrated. Moreover, the significance of SCIBW and SLGDR signs are underlined
by estimations of the negative and positive values of the local chirp-rate. The paper may be a
contribution in verifying the importance of the SIBW sign, which is usually neglected.

The presented parameters can be used not only in analysis but also in signal processing.
Processing can be implemented by the reversibility of the STFT. This will be the subject of
future work. Moreover, integration CICR, SCIBW and SLGDR representations with Kodera’s
approach can lead to designing a powerful and robust tool for non-stationary sparse signal pro-
cessing in the time-frequency domain. Future work will also continue in this area. Newly intro-
duced representations should be examined under many conditions: the uncertainty Heisenberg-
Gabor principle and analyzing window influence, resistance against noise, the Cramer-Rao lower
bound, a relation between CICR and second order partial derivatives of the phase of STFT etc. [2].

ACKNOWLEDGMENTS
The author would like to sincerely thank Dr. Mirosław Rojewski for the introduction

to the presented subject and Prof. Marek Moszyński for the supervision of the corresponded
dissertation [1].

Volume 17 HYDROACOUSTICS

35



REFERENCES

[1] K. Czarnecki, Gradient zespolonej fazy krótkoczasowej transformaty Fouriera w analizie
spektrograficznej, Ph. D. thesis, 2013 (in polish).

[2] K. Czarnecki, M. Moszyński, A novel method of local chirp-rate estimation of LFM chirp
signals in the time-frequency domain, Proceedings of 36th International Conference on
Telecommunications and Signal Processing, pp. 704–708, Rome, Italy, 2013.

[3] X.-G. Xia, Discrete chirp-Fourier transform and its application to chirp rate estimation,
IEEE Transactions on Signal Processing, vol. 48, no. 11, pp. 3122–3133, 2000 .

[4] J.C. O’Neill, P. Flandrin, Chirp hunting, Proceedings of the IEEE-SP International Sym-
posium on Time-Frequency and Time-Scale Analysis, pp. 425–428, 1998.

[5] S. Barbarossa, Analysis of multicomponent LFM signals by a combined Wigner-Hough
transform, IEEE Transactions on Signal Processing, vol. 43, no. 6, pp. 511–1515, 1995.

[6] S. Saha, S.M. Kay, Maximum likelihood parameter estimation of superimposed chirps
using Monte Carlo importance sampling, IEEE Transactions on Signal Processing, vol. 50,
no. 2, pp. 224–230, 2002.

[7] D. A. Linden, A note concerning instantaneous frequency, Proceedings of the IRE, vol. 46,
pp. 1970–1970, 1958.

[8] S. L. Hahn, The Instantaneous Complex Frequency of the Sum of Two Harmonic Signals,
Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 48, no. 4, pp. 607–609,
2000.

[9] S. L. Hahn, The instantaneous complex frequency concept and its application to the analysis
of building-up of oscillations in oscillators, Proceedings of Vibration Problems, vol. 1,
pp. 24–46, 1959.

[10] B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. I. Fun-
damentals, Proceedings of the IEEE, vol. 80, no. 4, pp. 520–538, 1992.

[11] G. Jones, B. Boashash, Instantaneous frequency, instantaneous bandwidth and the analysis
of multicomponent signals, Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing ICASSP, pp. 2467–2450, 1990.

[12] A. E. Barnes, The calculation of instantaneous frequency and instantaneous bandwidth,
Geophysics, vol. 57, no. 11, pp. 1520–1524, 1992.

[13] K. N. Reddy and S. N. Reddy and A.S.R. Reddy, Significance of Complex Group Delay
Functions in Spectrum Estimation, Signal & Image Processing: An International Journal,
vol. 2, no. 1, pp. 114–133, 2011.

[14] D. Gabor, Theory of communication, Journal of the Institution of Electrical Engineers,
vol. 93, no. 26, pp. 429–457, 1946.

[15] K. Kodera, C. D. Villedary, R. Gendrin, A new method for the numerical analysis of non-
stationary signals, Physics of the Earth and Planetary Interiors, vol. 12, pp. 142–150, 1976.

[16] D. Nelson, Cross-spectral methods for processing speech, Journal of the Acoustical Society
of America, vol. 110, no. 5, pp. 2575–2592, 2001.

[17] D. Nelson, Instantaneous higher order phase derivatives, Digital Signal Processing, vol. 12,
pp. 416–428, 2002.

HYDROACOUSTICS Volume 17

36




